Nonequilibrium Steady-State Transport in Quantum Impurity Models: A Thermofield and Quantum Quench Approach Using Matrix Product States

The numerical renormalization group (NRG) is tailored to describe interacting impurity models in equilibrium, but it faces limitations for steady-state nonequilibrium, arising, e.g., due to an applied bias voltage. We show that these limitations can be overcome by describing the thermal leads using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2018-09, Vol.121 (13), p.137702-137702, Article 137702
Hauptverfasser: Schwarz, F, Weymann, I, von Delft, J, Weichselbaum, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The numerical renormalization group (NRG) is tailored to describe interacting impurity models in equilibrium, but it faces limitations for steady-state nonequilibrium, arising, e.g., due to an applied bias voltage. We show that these limitations can be overcome by describing the thermal leads using a thermofield approach, integrating out high energy modes using NRG, and then treating the nonequilibrium dynamics at low energies using a quench protocol, implemented using the time-dependent density matrix renormalization group. This yields quantitatively reliable results for the current (with errors ≲3%) down to the exponentially small energy scales characteristic of impurity models. We present results of benchmark quality for the temperature and magnetic field dependence of the zero-bias conductance peak for the single-impurity Anderson model.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.121.137702