Effects of asymmetry and hot-spot shape on ignition capsules

Asymmetric implosion of inertial confinement fusion capsules is known, both experimentally and computationally, to reduce thermonuclear performance. This work shows that low-mode asymmetries degrade performance as a result of a decrease in the hydrodynamic disassembly time of the hot-spot core, whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2018-08, Vol.98 (2-1), p.023203-023203, Article 023203
Hauptverfasser: Cheng, B, Kwan, T J T, Yi, S A, Landen, O L, Wang, Y M, Cerjan, C J, Batha, S H, Wysocki, F J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 023203
container_issue 2-1
container_start_page 023203
container_title Physical review. E
container_volume 98
creator Cheng, B
Kwan, T J T
Yi, S A
Landen, O L
Wang, Y M
Cerjan, C J
Batha, S H
Wysocki, F J
description Asymmetric implosion of inertial confinement fusion capsules is known, both experimentally and computationally, to reduce thermonuclear performance. This work shows that low-mode asymmetries degrade performance as a result of a decrease in the hydrodynamic disassembly time of the hot-spot core, which scales with the minimum dimension of the hot spot. The asymmetric shape of a hot spot results in decreased temperatures and areal densities and allows more alpha particles to escape, relative to an ideal spherical implosion, thus reducing alpha-energy deposition in the hot spot. Here, we extend previous ignition theory to include the hot-spot shape and quantify the effects of implosion asymmetry on both the ignition criterion and the capsule performance. The ignition criterion becomes more stringent with increasing deformation of the hot spot. The new theoretical results are validated by comparison with existing experimental data obtained at the National Ignition Facility. The shape effects on thermonuclear performance are relatively more noticeable for capsules having self-heating and high yields. The degradation of thermonuclear burn can be as high as 45% for shots with a yield lower than 2×10^{15} and less than 30% for shots with a higher yield.
doi_str_mv 10.1103/PhysRevE.98.023203
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1480029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112613499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-a12089b1c44e974405eb22004fb156c8cacab8ce5bcbf8c5318478fa8b6723793</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRbKn9Ay4kuHKTeueRZAJupNQHFBTR9TCZTkwkycTciZB_b0raru5ZfOdw-Qi5prCiFPj9ezHgh_3brFK5AsYZ8DMyZyKBECDi56csohlZIv4AAI0hTSi7JDMOLOIxY3PysMlzazwGLg80DnVtfTcEutkFhfMhts4HWOjWBq4Jyu-m9OUYjG6xryxekYtcV2iXh7sgX0-bz_VLuH17fl0_bkMjGPehpgxkmlEjhE0TISCyGWPja3lGo9hIo43OpLFRZrJcmohTKRKZa5nFCeNJyhfkdtp16EuFpvTWFMY1zfi5okICsD10N0Ft5357i17VJRpbVbqxrkfFKGUx5SLdo2xCTecQO5urtitr3Q2KgtrbVUe7KpVqsjuWbg77fVbb3alydMn_Ad2BdYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112613499</pqid></control><display><type>article</type><title>Effects of asymmetry and hot-spot shape on ignition capsules</title><source>American Physical Society Journals</source><creator>Cheng, B ; Kwan, T J T ; Yi, S A ; Landen, O L ; Wang, Y M ; Cerjan, C J ; Batha, S H ; Wysocki, F J</creator><creatorcontrib>Cheng, B ; Kwan, T J T ; Yi, S A ; Landen, O L ; Wang, Y M ; Cerjan, C J ; Batha, S H ; Wysocki, F J ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Asymmetric implosion of inertial confinement fusion capsules is known, both experimentally and computationally, to reduce thermonuclear performance. This work shows that low-mode asymmetries degrade performance as a result of a decrease in the hydrodynamic disassembly time of the hot-spot core, which scales with the minimum dimension of the hot spot. The asymmetric shape of a hot spot results in decreased temperatures and areal densities and allows more alpha particles to escape, relative to an ideal spherical implosion, thus reducing alpha-energy deposition in the hot spot. Here, we extend previous ignition theory to include the hot-spot shape and quantify the effects of implosion asymmetry on both the ignition criterion and the capsule performance. The ignition criterion becomes more stringent with increasing deformation of the hot spot. The new theoretical results are validated by comparison with existing experimental data obtained at the National Ignition Facility. The shape effects on thermonuclear performance are relatively more noticeable for capsules having self-heating and high yields. The degradation of thermonuclear burn can be as high as 45% for shots with a yield lower than 2×10^{15} and less than 30% for shots with a higher yield.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.98.023203</identifier><identifier>PMID: 30253622</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><ispartof>Physical review. E, 2018-08, Vol.98 (2-1), p.023203-023203, Article 023203</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-a12089b1c44e974405eb22004fb156c8cacab8ce5bcbf8c5318478fa8b6723793</citedby><cites>FETCH-LOGICAL-c423t-a12089b1c44e974405eb22004fb156c8cacab8ce5bcbf8c5318478fa8b6723793</cites><orcidid>0000000308036967 ; 0000000158737476 ; 0000000273956527 ; 0000000274913975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,2865,2866,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30253622$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1480029$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, B</creatorcontrib><creatorcontrib>Kwan, T J T</creatorcontrib><creatorcontrib>Yi, S A</creatorcontrib><creatorcontrib>Landen, O L</creatorcontrib><creatorcontrib>Wang, Y M</creatorcontrib><creatorcontrib>Cerjan, C J</creatorcontrib><creatorcontrib>Batha, S H</creatorcontrib><creatorcontrib>Wysocki, F J</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Effects of asymmetry and hot-spot shape on ignition capsules</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>Asymmetric implosion of inertial confinement fusion capsules is known, both experimentally and computationally, to reduce thermonuclear performance. This work shows that low-mode asymmetries degrade performance as a result of a decrease in the hydrodynamic disassembly time of the hot-spot core, which scales with the minimum dimension of the hot spot. The asymmetric shape of a hot spot results in decreased temperatures and areal densities and allows more alpha particles to escape, relative to an ideal spherical implosion, thus reducing alpha-energy deposition in the hot spot. Here, we extend previous ignition theory to include the hot-spot shape and quantify the effects of implosion asymmetry on both the ignition criterion and the capsule performance. The ignition criterion becomes more stringent with increasing deformation of the hot spot. The new theoretical results are validated by comparison with existing experimental data obtained at the National Ignition Facility. The shape effects on thermonuclear performance are relatively more noticeable for capsules having self-heating and high yields. The degradation of thermonuclear burn can be as high as 45% for shots with a yield lower than 2×10^{15} and less than 30% for shots with a higher yield.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRbKn9Ay4kuHKTeueRZAJupNQHFBTR9TCZTkwkycTciZB_b0raru5ZfOdw-Qi5prCiFPj9ezHgh_3brFK5AsYZ8DMyZyKBECDi56csohlZIv4AAI0hTSi7JDMOLOIxY3PysMlzazwGLg80DnVtfTcEutkFhfMhts4HWOjWBq4Jyu-m9OUYjG6xryxekYtcV2iXh7sgX0-bz_VLuH17fl0_bkMjGPehpgxkmlEjhE0TISCyGWPja3lGo9hIo43OpLFRZrJcmohTKRKZa5nFCeNJyhfkdtp16EuFpvTWFMY1zfi5okICsD10N0Ft5357i17VJRpbVbqxrkfFKGUx5SLdo2xCTecQO5urtitr3Q2KgtrbVUe7KpVqsjuWbg77fVbb3alydMn_Ad2BdYg</recordid><startdate>20180813</startdate><enddate>20180813</enddate><creator>Cheng, B</creator><creator>Kwan, T J T</creator><creator>Yi, S A</creator><creator>Landen, O L</creator><creator>Wang, Y M</creator><creator>Cerjan, C J</creator><creator>Batha, S H</creator><creator>Wysocki, F J</creator><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000308036967</orcidid><orcidid>https://orcid.org/0000000158737476</orcidid><orcidid>https://orcid.org/0000000273956527</orcidid><orcidid>https://orcid.org/0000000274913975</orcidid></search><sort><creationdate>20180813</creationdate><title>Effects of asymmetry and hot-spot shape on ignition capsules</title><author>Cheng, B ; Kwan, T J T ; Yi, S A ; Landen, O L ; Wang, Y M ; Cerjan, C J ; Batha, S H ; Wysocki, F J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-a12089b1c44e974405eb22004fb156c8cacab8ce5bcbf8c5318478fa8b6723793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, B</creatorcontrib><creatorcontrib>Kwan, T J T</creatorcontrib><creatorcontrib>Yi, S A</creatorcontrib><creatorcontrib>Landen, O L</creatorcontrib><creatorcontrib>Wang, Y M</creatorcontrib><creatorcontrib>Cerjan, C J</creatorcontrib><creatorcontrib>Batha, S H</creatorcontrib><creatorcontrib>Wysocki, F J</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, B</au><au>Kwan, T J T</au><au>Yi, S A</au><au>Landen, O L</au><au>Wang, Y M</au><au>Cerjan, C J</au><au>Batha, S H</au><au>Wysocki, F J</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of asymmetry and hot-spot shape on ignition capsules</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2018-08-13</date><risdate>2018</risdate><volume>98</volume><issue>2-1</issue><spage>023203</spage><epage>023203</epage><pages>023203-023203</pages><artnum>023203</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>Asymmetric implosion of inertial confinement fusion capsules is known, both experimentally and computationally, to reduce thermonuclear performance. This work shows that low-mode asymmetries degrade performance as a result of a decrease in the hydrodynamic disassembly time of the hot-spot core, which scales with the minimum dimension of the hot spot. The asymmetric shape of a hot spot results in decreased temperatures and areal densities and allows more alpha particles to escape, relative to an ideal spherical implosion, thus reducing alpha-energy deposition in the hot spot. Here, we extend previous ignition theory to include the hot-spot shape and quantify the effects of implosion asymmetry on both the ignition criterion and the capsule performance. The ignition criterion becomes more stringent with increasing deformation of the hot spot. The new theoretical results are validated by comparison with existing experimental data obtained at the National Ignition Facility. The shape effects on thermonuclear performance are relatively more noticeable for capsules having self-heating and high yields. The degradation of thermonuclear burn can be as high as 45% for shots with a yield lower than 2×10^{15} and less than 30% for shots with a higher yield.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><pmid>30253622</pmid><doi>10.1103/PhysRevE.98.023203</doi><tpages>1</tpages><orcidid>https://orcid.org/0000000308036967</orcidid><orcidid>https://orcid.org/0000000158737476</orcidid><orcidid>https://orcid.org/0000000273956527</orcidid><orcidid>https://orcid.org/0000000274913975</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2018-08, Vol.98 (2-1), p.023203-023203, Article 023203
issn 2470-0045
2470-0053
language eng
recordid cdi_osti_scitechconnect_1480029
source American Physical Society Journals
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
title Effects of asymmetry and hot-spot shape on ignition capsules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A03%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20asymmetry%20and%20hot-spot%20shape%20on%20ignition%20capsules&rft.jtitle=Physical%20review.%20E&rft.au=Cheng,%20B&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2018-08-13&rft.volume=98&rft.issue=2-1&rft.spage=023203&rft.epage=023203&rft.pages=023203-023203&rft.artnum=023203&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.98.023203&rft_dat=%3Cproquest_osti_%3E2112613499%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112613499&rft_id=info:pmid/30253622&rfr_iscdi=true