The X-ray counterpart to the gravitational-wave event GW170817

Detection of X-ray emission at a location coincident with the kilonova transient of the gravitational-wave event GW170817 provides the missing observational link between short gamma-ray bursts and gravitational waves from neutron-star mergers. When neutron stars collide Merging neutron stars are pot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2017-11, Vol.551 (7678), p.71-74
Hauptverfasser: Troja, E., Piro, L., van Eerten, H., Wollaeger, R. T., Im, M., Fox, O. D., Butler, N. R., Cenko, S. B., Sakamoto, T., Fryer, C. L., Ricci, R., Lien, A., Ryan, R. E., Korobkin, O., Lee, S.-K., Burgess, J. M., Lee, W. H., Watson, A. M., Choi, C., Covino, S., D’Avanzo, P., Fontes, C. J., González, J. Becerra, Khandrika, H. G., Kim, J., Kim, S.-L., Lee, C.-U., Lee, H. M., Kutyrev, A., Lim, G., Sánchez-Ramírez, R., Veilleux, S., Wieringa, M. H., Yoon, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue 7678
container_start_page 71
container_title Nature (London)
container_volume 551
creator Troja, E.
Piro, L.
van Eerten, H.
Wollaeger, R. T.
Im, M.
Fox, O. D.
Butler, N. R.
Cenko, S. B.
Sakamoto, T.
Fryer, C. L.
Ricci, R.
Lien, A.
Ryan, R. E.
Korobkin, O.
Lee, S.-K.
Burgess, J. M.
Lee, W. H.
Watson, A. M.
Choi, C.
Covino, S.
D’Avanzo, P.
Fontes, C. J.
González, J. Becerra
Khandrika, H. G.
Kim, J.
Kim, S.-L.
Lee, C.-U.
Lee, H. M.
Kutyrev, A.
Lim, G.
Sánchez-Ramírez, R.
Veilleux, S.
Wieringa, M. H.
Yoon, Y.
description Detection of X-ray emission at a location coincident with the kilonova transient of the gravitational-wave event GW170817 provides the missing observational link between short gamma-ray bursts and gravitational waves from neutron-star mergers. When neutron stars collide Merging neutron stars are potential sources of gravitational waves and have long been predicted to produce jets of material as part of a low-luminosity transient known as a 'kilonova'. There is growing evidence that neutron-star mergers also give rise to short, hard gamma-ray bursts. A group of papers in this issue report observations of a transient associated with the gravitational-wave event GW170817—a signature of two neutron stars merging and a gamma-ray flash—that was detected in August 2017. The observed gamma-ray, X-ray, optical and infrared radiation signatures support the predictions of an outflow of matter from double neutron-star mergers and present a clear origin for gamma-ray bursts. Previous predictions differ over whether the jet material would combine to form light or heavy elements. These papers now show that the early part of the outflow was associated with lighter elements whereas the later observations can be explained by heavier elements, the origins of which have been uncertain. However, one paper (by Stephen Smartt and colleagues) argues that only light elements are needed for the entire event. Additionally, Eleonora Troja and colleagues report X-ray observations and radio emissions that suggest that the 'kilonova' jet was observed off-axis, which could explain why gamma-ray-burst detections are seen as dim. A long-standing paradigm in astrophysics is that collisions—or mergers—of two neutron stars form highly relativistic and collimated outflows (jets) that power γ-ray bursts of short (less than two seconds) duration 1 , 2 , 3 . The observational support for this model, however, is only indirect 4 , 5 . A hitherto outstanding prediction is that gravitational-wave events from such mergers should be associated with γ-ray bursts, and that a majority of these bursts should be seen off-axis, that is, they should point away from Earth 6 , 7 . Here we report the discovery observations of the X-ray counterpart associated with the gravitational-wave event GW170817. Although the electromagnetic counterpart at optical and infrared frequencies is dominated by the radioactive glow (known as a ‘kilonova’) from freshly synthesized rapid neutron capture (r-process) material in the m
doi_str_mv 10.1038/nature24290
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1479933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A512765831</galeid><sourcerecordid>A512765831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-e8289c7a01d139e0ad8a4a66f50d454e8f0f3bc276875b5a81ffdf9e29eadfac3</originalsourceid><addsrcrecordid>eNpt0cFKAzEQBuAgCtbqyRdY9KiryW42m1yEUrQKgpeK3sI0O2m3tJs2yVb69q5UaAVPc5iPmX8YQi4ZvWM0l_cNxNZjxjNFj0iP8VKkXMjymPQozWRKZS5OyVkIc0ppwUreIw_jGSafqYdtYlzbRPQr8DGJLoldY-phU0eItWtgkX7BBhPcYBOT0QcrqWTlOTmxsAh48Vv75P3pcTx8Tl_fRi_DwWtqOBcxRZlJZUqgrGK5QgqVBA5C2IJWvOAoLbX5xGRlF7aYFCCZtZVVmCmEyoLJ--RqN9eFWOtg6ohmZlzToIm6u1OpPO_Q9Q6tvFu3GKKeu9Z3yYNmSlCVCVGKvZrCAnXdWBc9mGUdjB4UrItQyJztF_5RZlWv9SG62SHjXQgerV75egl-qxnVPw_RBw_p9O1Oh041U_QH8f7h3-EKilE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1960926676</pqid></control><display><type>article</type><title>The X-ray counterpart to the gravitational-wave event GW170817</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Troja, E. ; Piro, L. ; van Eerten, H. ; Wollaeger, R. T. ; Im, M. ; Fox, O. D. ; Butler, N. R. ; Cenko, S. B. ; Sakamoto, T. ; Fryer, C. L. ; Ricci, R. ; Lien, A. ; Ryan, R. E. ; Korobkin, O. ; Lee, S.-K. ; Burgess, J. M. ; Lee, W. H. ; Watson, A. M. ; Choi, C. ; Covino, S. ; D’Avanzo, P. ; Fontes, C. J. ; González, J. Becerra ; Khandrika, H. G. ; Kim, J. ; Kim, S.-L. ; Lee, C.-U. ; Lee, H. M. ; Kutyrev, A. ; Lim, G. ; Sánchez-Ramírez, R. ; Veilleux, S. ; Wieringa, M. H. ; Yoon, Y.</creator><creatorcontrib>Troja, E. ; Piro, L. ; van Eerten, H. ; Wollaeger, R. T. ; Im, M. ; Fox, O. D. ; Butler, N. R. ; Cenko, S. B. ; Sakamoto, T. ; Fryer, C. L. ; Ricci, R. ; Lien, A. ; Ryan, R. E. ; Korobkin, O. ; Lee, S.-K. ; Burgess, J. M. ; Lee, W. H. ; Watson, A. M. ; Choi, C. ; Covino, S. ; D’Avanzo, P. ; Fontes, C. J. ; González, J. Becerra ; Khandrika, H. G. ; Kim, J. ; Kim, S.-L. ; Lee, C.-U. ; Lee, H. M. ; Kutyrev, A. ; Lim, G. ; Sánchez-Ramírez, R. ; Veilleux, S. ; Wieringa, M. H. ; Yoon, Y. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Detection of X-ray emission at a location coincident with the kilonova transient of the gravitational-wave event GW170817 provides the missing observational link between short gamma-ray bursts and gravitational waves from neutron-star mergers. When neutron stars collide Merging neutron stars are potential sources of gravitational waves and have long been predicted to produce jets of material as part of a low-luminosity transient known as a 'kilonova'. There is growing evidence that neutron-star mergers also give rise to short, hard gamma-ray bursts. A group of papers in this issue report observations of a transient associated with the gravitational-wave event GW170817—a signature of two neutron stars merging and a gamma-ray flash—that was detected in August 2017. The observed gamma-ray, X-ray, optical and infrared radiation signatures support the predictions of an outflow of matter from double neutron-star mergers and present a clear origin for gamma-ray bursts. Previous predictions differ over whether the jet material would combine to form light or heavy elements. These papers now show that the early part of the outflow was associated with lighter elements whereas the later observations can be explained by heavier elements, the origins of which have been uncertain. However, one paper (by Stephen Smartt and colleagues) argues that only light elements are needed for the entire event. Additionally, Eleonora Troja and colleagues report X-ray observations and radio emissions that suggest that the 'kilonova' jet was observed off-axis, which could explain why gamma-ray-burst detections are seen as dim. A long-standing paradigm in astrophysics is that collisions—or mergers—of two neutron stars form highly relativistic and collimated outflows (jets) that power γ-ray bursts of short (less than two seconds) duration 1 , 2 , 3 . The observational support for this model, however, is only indirect 4 , 5 . A hitherto outstanding prediction is that gravitational-wave events from such mergers should be associated with γ-ray bursts, and that a majority of these bursts should be seen off-axis, that is, they should point away from Earth 6 , 7 . Here we report the discovery observations of the X-ray counterpart associated with the gravitational-wave event GW170817. Although the electromagnetic counterpart at optical and infrared frequencies is dominated by the radioactive glow (known as a ‘kilonova’) from freshly synthesized rapid neutron capture (r-process) material in the merger ejecta 8 , 9 , 10 , observations at X-ray and, later, radio frequencies are consistent with a short γ-ray burst viewed off-axis 7 , 11 . Our detection of X-ray emission at a location coincident with the kilonova transient provides the missing observational link between short γ-ray bursts and gravitational waves from neutron-star mergers, and gives independent confirmation of the collimated nature of the γ-ray-burst emission.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature24290</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/33/34/864 ; 639/33/34/867 ; ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; Bursting ; Bursts ; Collimation ; counterpart ; Ejecta ; Ejection ; Emission ; Emissions ; Gamma rays ; Gravitational waves ; Gravity ; Humanities and Social Sciences ; kilonova ; letter ; Light ; multidisciplinary ; Neutron stars ; Neutrons ; Nuclear capture ; Observations ; Observatories ; r-process ; Radio frequency ; Relativism ; Science ; Star &amp; galaxy formation ; X-ray emissions ; X-rays</subject><ispartof>Nature (London), 2017-11, Vol.551 (7678), p.71-74</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 2, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-e8289c7a01d139e0ad8a4a66f50d454e8f0f3bc276875b5a81ffdf9e29eadfac3</citedby><cites>FETCH-LOGICAL-c446t-e8289c7a01d139e0ad8a4a66f50d454e8f0f3bc276875b5a81ffdf9e29eadfac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature24290$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature24290$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1479933$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Troja, E.</creatorcontrib><creatorcontrib>Piro, L.</creatorcontrib><creatorcontrib>van Eerten, H.</creatorcontrib><creatorcontrib>Wollaeger, R. T.</creatorcontrib><creatorcontrib>Im, M.</creatorcontrib><creatorcontrib>Fox, O. D.</creatorcontrib><creatorcontrib>Butler, N. R.</creatorcontrib><creatorcontrib>Cenko, S. B.</creatorcontrib><creatorcontrib>Sakamoto, T.</creatorcontrib><creatorcontrib>Fryer, C. L.</creatorcontrib><creatorcontrib>Ricci, R.</creatorcontrib><creatorcontrib>Lien, A.</creatorcontrib><creatorcontrib>Ryan, R. E.</creatorcontrib><creatorcontrib>Korobkin, O.</creatorcontrib><creatorcontrib>Lee, S.-K.</creatorcontrib><creatorcontrib>Burgess, J. M.</creatorcontrib><creatorcontrib>Lee, W. H.</creatorcontrib><creatorcontrib>Watson, A. M.</creatorcontrib><creatorcontrib>Choi, C.</creatorcontrib><creatorcontrib>Covino, S.</creatorcontrib><creatorcontrib>D’Avanzo, P.</creatorcontrib><creatorcontrib>Fontes, C. J.</creatorcontrib><creatorcontrib>González, J. Becerra</creatorcontrib><creatorcontrib>Khandrika, H. G.</creatorcontrib><creatorcontrib>Kim, J.</creatorcontrib><creatorcontrib>Kim, S.-L.</creatorcontrib><creatorcontrib>Lee, C.-U.</creatorcontrib><creatorcontrib>Lee, H. M.</creatorcontrib><creatorcontrib>Kutyrev, A.</creatorcontrib><creatorcontrib>Lim, G.</creatorcontrib><creatorcontrib>Sánchez-Ramírez, R.</creatorcontrib><creatorcontrib>Veilleux, S.</creatorcontrib><creatorcontrib>Wieringa, M. H.</creatorcontrib><creatorcontrib>Yoon, Y.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>The X-ray counterpart to the gravitational-wave event GW170817</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>Detection of X-ray emission at a location coincident with the kilonova transient of the gravitational-wave event GW170817 provides the missing observational link between short gamma-ray bursts and gravitational waves from neutron-star mergers. When neutron stars collide Merging neutron stars are potential sources of gravitational waves and have long been predicted to produce jets of material as part of a low-luminosity transient known as a 'kilonova'. There is growing evidence that neutron-star mergers also give rise to short, hard gamma-ray bursts. A group of papers in this issue report observations of a transient associated with the gravitational-wave event GW170817—a signature of two neutron stars merging and a gamma-ray flash—that was detected in August 2017. The observed gamma-ray, X-ray, optical and infrared radiation signatures support the predictions of an outflow of matter from double neutron-star mergers and present a clear origin for gamma-ray bursts. Previous predictions differ over whether the jet material would combine to form light or heavy elements. These papers now show that the early part of the outflow was associated with lighter elements whereas the later observations can be explained by heavier elements, the origins of which have been uncertain. However, one paper (by Stephen Smartt and colleagues) argues that only light elements are needed for the entire event. Additionally, Eleonora Troja and colleagues report X-ray observations and radio emissions that suggest that the 'kilonova' jet was observed off-axis, which could explain why gamma-ray-burst detections are seen as dim. A long-standing paradigm in astrophysics is that collisions—or mergers—of two neutron stars form highly relativistic and collimated outflows (jets) that power γ-ray bursts of short (less than two seconds) duration 1 , 2 , 3 . The observational support for this model, however, is only indirect 4 , 5 . A hitherto outstanding prediction is that gravitational-wave events from such mergers should be associated with γ-ray bursts, and that a majority of these bursts should be seen off-axis, that is, they should point away from Earth 6 , 7 . Here we report the discovery observations of the X-ray counterpart associated with the gravitational-wave event GW170817. Although the electromagnetic counterpart at optical and infrared frequencies is dominated by the radioactive glow (known as a ‘kilonova’) from freshly synthesized rapid neutron capture (r-process) material in the merger ejecta 8 , 9 , 10 , observations at X-ray and, later, radio frequencies are consistent with a short γ-ray burst viewed off-axis 7 , 11 . Our detection of X-ray emission at a location coincident with the kilonova transient provides the missing observational link between short γ-ray bursts and gravitational waves from neutron-star mergers, and gives independent confirmation of the collimated nature of the γ-ray-burst emission.</description><subject>639/33/34/864</subject><subject>639/33/34/867</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>Bursting</subject><subject>Bursts</subject><subject>Collimation</subject><subject>counterpart</subject><subject>Ejecta</subject><subject>Ejection</subject><subject>Emission</subject><subject>Emissions</subject><subject>Gamma rays</subject><subject>Gravitational waves</subject><subject>Gravity</subject><subject>Humanities and Social Sciences</subject><subject>kilonova</subject><subject>letter</subject><subject>Light</subject><subject>multidisciplinary</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Nuclear capture</subject><subject>Observations</subject><subject>Observatories</subject><subject>r-process</subject><subject>Radio frequency</subject><subject>Relativism</subject><subject>Science</subject><subject>Star &amp; galaxy formation</subject><subject>X-ray emissions</subject><subject>X-rays</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpt0cFKAzEQBuAgCtbqyRdY9KiryW42m1yEUrQKgpeK3sI0O2m3tJs2yVb69q5UaAVPc5iPmX8YQi4ZvWM0l_cNxNZjxjNFj0iP8VKkXMjymPQozWRKZS5OyVkIc0ppwUreIw_jGSafqYdtYlzbRPQr8DGJLoldY-phU0eItWtgkX7BBhPcYBOT0QcrqWTlOTmxsAh48Vv75P3pcTx8Tl_fRi_DwWtqOBcxRZlJZUqgrGK5QgqVBA5C2IJWvOAoLbX5xGRlF7aYFCCZtZVVmCmEyoLJ--RqN9eFWOtg6ohmZlzToIm6u1OpPO_Q9Q6tvFu3GKKeu9Z3yYNmSlCVCVGKvZrCAnXdWBc9mGUdjB4UrItQyJztF_5RZlWv9SG62SHjXQgerV75egl-qxnVPw_RBw_p9O1Oh041U_QH8f7h3-EKilE</recordid><startdate>20171102</startdate><enddate>20171102</enddate><creator>Troja, E.</creator><creator>Piro, L.</creator><creator>van Eerten, H.</creator><creator>Wollaeger, R. T.</creator><creator>Im, M.</creator><creator>Fox, O. D.</creator><creator>Butler, N. R.</creator><creator>Cenko, S. B.</creator><creator>Sakamoto, T.</creator><creator>Fryer, C. L.</creator><creator>Ricci, R.</creator><creator>Lien, A.</creator><creator>Ryan, R. E.</creator><creator>Korobkin, O.</creator><creator>Lee, S.-K.</creator><creator>Burgess, J. M.</creator><creator>Lee, W. H.</creator><creator>Watson, A. M.</creator><creator>Choi, C.</creator><creator>Covino, S.</creator><creator>D’Avanzo, P.</creator><creator>Fontes, C. J.</creator><creator>González, J. Becerra</creator><creator>Khandrika, H. G.</creator><creator>Kim, J.</creator><creator>Kim, S.-L.</creator><creator>Lee, C.-U.</creator><creator>Lee, H. M.</creator><creator>Kutyrev, A.</creator><creator>Lim, G.</creator><creator>Sánchez-Ramírez, R.</creator><creator>Veilleux, S.</creator><creator>Wieringa, M. H.</creator><creator>Yoon, Y.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20171102</creationdate><title>The X-ray counterpart to the gravitational-wave event GW170817</title><author>Troja, E. ; Piro, L. ; van Eerten, H. ; Wollaeger, R. T. ; Im, M. ; Fox, O. D. ; Butler, N. R. ; Cenko, S. B. ; Sakamoto, T. ; Fryer, C. L. ; Ricci, R. ; Lien, A. ; Ryan, R. E. ; Korobkin, O. ; Lee, S.-K. ; Burgess, J. M. ; Lee, W. H. ; Watson, A. M. ; Choi, C. ; Covino, S. ; D’Avanzo, P. ; Fontes, C. J. ; González, J. Becerra ; Khandrika, H. G. ; Kim, J. ; Kim, S.-L. ; Lee, C.-U. ; Lee, H. M. ; Kutyrev, A. ; Lim, G. ; Sánchez-Ramírez, R. ; Veilleux, S. ; Wieringa, M. H. ; Yoon, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-e8289c7a01d139e0ad8a4a66f50d454e8f0f3bc276875b5a81ffdf9e29eadfac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/33/34/864</topic><topic>639/33/34/867</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>Bursting</topic><topic>Bursts</topic><topic>Collimation</topic><topic>counterpart</topic><topic>Ejecta</topic><topic>Ejection</topic><topic>Emission</topic><topic>Emissions</topic><topic>Gamma rays</topic><topic>Gravitational waves</topic><topic>Gravity</topic><topic>Humanities and Social Sciences</topic><topic>kilonova</topic><topic>letter</topic><topic>Light</topic><topic>multidisciplinary</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Nuclear capture</topic><topic>Observations</topic><topic>Observatories</topic><topic>r-process</topic><topic>Radio frequency</topic><topic>Relativism</topic><topic>Science</topic><topic>Star &amp; galaxy formation</topic><topic>X-ray emissions</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Troja, E.</creatorcontrib><creatorcontrib>Piro, L.</creatorcontrib><creatorcontrib>van Eerten, H.</creatorcontrib><creatorcontrib>Wollaeger, R. T.</creatorcontrib><creatorcontrib>Im, M.</creatorcontrib><creatorcontrib>Fox, O. D.</creatorcontrib><creatorcontrib>Butler, N. R.</creatorcontrib><creatorcontrib>Cenko, S. B.</creatorcontrib><creatorcontrib>Sakamoto, T.</creatorcontrib><creatorcontrib>Fryer, C. L.</creatorcontrib><creatorcontrib>Ricci, R.</creatorcontrib><creatorcontrib>Lien, A.</creatorcontrib><creatorcontrib>Ryan, R. E.</creatorcontrib><creatorcontrib>Korobkin, O.</creatorcontrib><creatorcontrib>Lee, S.-K.</creatorcontrib><creatorcontrib>Burgess, J. M.</creatorcontrib><creatorcontrib>Lee, W. H.</creatorcontrib><creatorcontrib>Watson, A. M.</creatorcontrib><creatorcontrib>Choi, C.</creatorcontrib><creatorcontrib>Covino, S.</creatorcontrib><creatorcontrib>D’Avanzo, P.</creatorcontrib><creatorcontrib>Fontes, C. J.</creatorcontrib><creatorcontrib>González, J. Becerra</creatorcontrib><creatorcontrib>Khandrika, H. G.</creatorcontrib><creatorcontrib>Kim, J.</creatorcontrib><creatorcontrib>Kim, S.-L.</creatorcontrib><creatorcontrib>Lee, C.-U.</creatorcontrib><creatorcontrib>Lee, H. M.</creatorcontrib><creatorcontrib>Kutyrev, A.</creatorcontrib><creatorcontrib>Lim, G.</creatorcontrib><creatorcontrib>Sánchez-Ramírez, R.</creatorcontrib><creatorcontrib>Veilleux, S.</creatorcontrib><creatorcontrib>Wieringa, M. H.</creatorcontrib><creatorcontrib>Yoon, Y.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Troja, E.</au><au>Piro, L.</au><au>van Eerten, H.</au><au>Wollaeger, R. T.</au><au>Im, M.</au><au>Fox, O. D.</au><au>Butler, N. R.</au><au>Cenko, S. B.</au><au>Sakamoto, T.</au><au>Fryer, C. L.</au><au>Ricci, R.</au><au>Lien, A.</au><au>Ryan, R. E.</au><au>Korobkin, O.</au><au>Lee, S.-K.</au><au>Burgess, J. M.</au><au>Lee, W. H.</au><au>Watson, A. M.</au><au>Choi, C.</au><au>Covino, S.</au><au>D’Avanzo, P.</au><au>Fontes, C. J.</au><au>González, J. Becerra</au><au>Khandrika, H. G.</au><au>Kim, J.</au><au>Kim, S.-L.</au><au>Lee, C.-U.</au><au>Lee, H. M.</au><au>Kutyrev, A.</au><au>Lim, G.</au><au>Sánchez-Ramírez, R.</au><au>Veilleux, S.</au><au>Wieringa, M. H.</au><au>Yoon, Y.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The X-ray counterpart to the gravitational-wave event GW170817</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>2017-11-02</date><risdate>2017</risdate><volume>551</volume><issue>7678</issue><spage>71</spage><epage>74</epage><pages>71-74</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Detection of X-ray emission at a location coincident with the kilonova transient of the gravitational-wave event GW170817 provides the missing observational link between short gamma-ray bursts and gravitational waves from neutron-star mergers. When neutron stars collide Merging neutron stars are potential sources of gravitational waves and have long been predicted to produce jets of material as part of a low-luminosity transient known as a 'kilonova'. There is growing evidence that neutron-star mergers also give rise to short, hard gamma-ray bursts. A group of papers in this issue report observations of a transient associated with the gravitational-wave event GW170817—a signature of two neutron stars merging and a gamma-ray flash—that was detected in August 2017. The observed gamma-ray, X-ray, optical and infrared radiation signatures support the predictions of an outflow of matter from double neutron-star mergers and present a clear origin for gamma-ray bursts. Previous predictions differ over whether the jet material would combine to form light or heavy elements. These papers now show that the early part of the outflow was associated with lighter elements whereas the later observations can be explained by heavier elements, the origins of which have been uncertain. However, one paper (by Stephen Smartt and colleagues) argues that only light elements are needed for the entire event. Additionally, Eleonora Troja and colleagues report X-ray observations and radio emissions that suggest that the 'kilonova' jet was observed off-axis, which could explain why gamma-ray-burst detections are seen as dim. A long-standing paradigm in astrophysics is that collisions—or mergers—of two neutron stars form highly relativistic and collimated outflows (jets) that power γ-ray bursts of short (less than two seconds) duration 1 , 2 , 3 . The observational support for this model, however, is only indirect 4 , 5 . A hitherto outstanding prediction is that gravitational-wave events from such mergers should be associated with γ-ray bursts, and that a majority of these bursts should be seen off-axis, that is, they should point away from Earth 6 , 7 . Here we report the discovery observations of the X-ray counterpart associated with the gravitational-wave event GW170817. Although the electromagnetic counterpart at optical and infrared frequencies is dominated by the radioactive glow (known as a ‘kilonova’) from freshly synthesized rapid neutron capture (r-process) material in the merger ejecta 8 , 9 , 10 , observations at X-ray and, later, radio frequencies are consistent with a short γ-ray burst viewed off-axis 7 , 11 . Our detection of X-ray emission at a location coincident with the kilonova transient provides the missing observational link between short γ-ray bursts and gravitational waves from neutron-star mergers, and gives independent confirmation of the collimated nature of the γ-ray-burst emission.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nature24290</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2017-11, Vol.551 (7678), p.71-74
issn 0028-0836
1476-4687
language eng
recordid cdi_osti_scitechconnect_1479933
source Nature; SpringerLink Journals - AutoHoldings
subjects 639/33/34/864
639/33/34/867
ASTRONOMY AND ASTROPHYSICS
Astrophysics
Bursting
Bursts
Collimation
counterpart
Ejecta
Ejection
Emission
Emissions
Gamma rays
Gravitational waves
Gravity
Humanities and Social Sciences
kilonova
letter
Light
multidisciplinary
Neutron stars
Neutrons
Nuclear capture
Observations
Observatories
r-process
Radio frequency
Relativism
Science
Star & galaxy formation
X-ray emissions
X-rays
title The X-ray counterpart to the gravitational-wave event GW170817
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20X-ray%20counterpart%20to%20the%20gravitational-wave%20event%20GW170817&rft.jtitle=Nature%20(London)&rft.au=Troja,%20E.&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2017-11-02&rft.volume=551&rft.issue=7678&rft.spage=71&rft.epage=74&rft.pages=71-74&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/nature24290&rft_dat=%3Cgale_osti_%3EA512765831%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1960926676&rft_id=info:pmid/&rft_galeid=A512765831&rfr_iscdi=true