Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling

Passive daytime radiative cooling (PDRC) involves spontaneously cooling a surface by reflecting sunlight and radiating heat to the cold outer space. Current PDRC designs are promising alternatives to electrical cooling but are either inefficient or have limited applicability. We present a simple, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2018-10, Vol.362 (6412), p.315-319
Hauptverfasser: Mandal, Jyotirmoy, Fu, Yanke, Overvig, Adam C, Jia, Mingxin, Sun, Kerui, Shi, Norman N, Zhou, Hua, Xiao, Xianghui, Yu, Nanfang, Yang, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 319
container_issue 6412
container_start_page 315
container_title Science (American Association for the Advancement of Science)
container_volume 362
creator Mandal, Jyotirmoy
Fu, Yanke
Overvig, Adam C
Jia, Mingxin
Sun, Kerui
Shi, Norman N
Zhou, Hua
Xiao, Xianghui
Yu, Nanfang
Yang, Yuan
description Passive daytime radiative cooling (PDRC) involves spontaneously cooling a surface by reflecting sunlight and radiating heat to the cold outer space. Current PDRC designs are promising alternatives to electrical cooling but are either inefficient or have limited applicability. We present a simple, inexpensive, and scalable phase inversion-based method for fabricating hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene) [P(VdF-HFP) ] coatings with excellent PDRC capability. High, substrate-independent hemispherical solar reflectances (0.96 ± 0.03) and long-wave infrared emittances (0.97 ± 0.02) allow for subambient temperature drops of ~6°C and cooling powers of ~96 watts per square meter (W m ) under solar intensities of 890 and 750 W m , respectively. The performance equals or surpasses those of state-of-the-art PDRC designs, and the technique offers a paint-like simplicity.
doi_str_mv 10.1126/science.aat9513
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1478138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2114697285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-2d09f25c11fd30a2e124d7d1d12fe0dcd3d8afaee2851217ed22b0020606d55a3</originalsourceid><addsrcrecordid>eNpd0U1PGzEQBmALUUGgPfdWreiFy8LMOPt1rKK2VIrUCz1WlrHHxGh3HWwHKf8eo4QeerJkPzOj8SvEZ4QbRGpvk_E8G77ROg8NyhOxQBiaeiCQp2IBINu6h645FxcpPQGUt0GeiXMJ1FIraSH-3nmOOpqNN3oc99U2xLBL5Rj3E8fKBJ39_JgqF2K18Y-bQtg5_zY2V1udkn_hyup99hNXUVtffLkxIYyl7qP44PSY-NPxvBR_fny_X93V698_f62-rWuzHPpck4XBUWMQnZWgiZGWtrNokRyDNVbaXjvNTH2DhB1bogcAghZa2zRaXoqrQ9-QslflUzKbjQnzzCYrXHY9yr6g6wPaxvC845TV5JPhcdQzl50VIS7boSszCv36H30KuziXFYoi6pqWUBZ1e1AmhpQiO7WNftJxrxDUWzzqGI86xlMqvhz77h4mtv_8ex7yFSiDjkI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2122756213</pqid></control><display><type>article</type><title>Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Mandal, Jyotirmoy ; Fu, Yanke ; Overvig, Adam C ; Jia, Mingxin ; Sun, Kerui ; Shi, Norman N ; Zhou, Hua ; Xiao, Xianghui ; Yu, Nanfang ; Yang, Yuan</creator><creatorcontrib>Mandal, Jyotirmoy ; Fu, Yanke ; Overvig, Adam C ; Jia, Mingxin ; Sun, Kerui ; Shi, Norman N ; Zhou, Hua ; Xiao, Xianghui ; Yu, Nanfang ; Yang, Yuan ; Brookhaven National Lab. (BNL), Upton, NY (United States) ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Passive daytime radiative cooling (PDRC) involves spontaneously cooling a surface by reflecting sunlight and radiating heat to the cold outer space. Current PDRC designs are promising alternatives to electrical cooling but are either inefficient or have limited applicability. We present a simple, inexpensive, and scalable phase inversion-based method for fabricating hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene) [P(VdF-HFP) ] coatings with excellent PDRC capability. High, substrate-independent hemispherical solar reflectances (0.96 ± 0.03) and long-wave infrared emittances (0.97 ± 0.02) allow for subambient temperature drops of ~6°C and cooling powers of ~96 watts per square meter (W m ) under solar intensities of 890 and 750 W m , respectively. The performance equals or surpasses those of state-of-the-art PDRC designs, and the technique offers a paint-like simplicity.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aat9513</identifier><identifier>PMID: 30262632</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Air conditioners ; Air conditioning ; Climate Control ; Cooling ; Daytime ; Durability ; Fluorides ; MATERIALS SCIENCE ; Polymer coatings ; Protective coatings ; Roofs ; Substrates ; Temperature ; Vinylidene ; Vinylidene fluoride</subject><ispartof>Science (American Association for the Advancement of Science), 2018-10, Vol.362 (6412), p.315-319</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-2d09f25c11fd30a2e124d7d1d12fe0dcd3d8afaee2851217ed22b0020606d55a3</citedby><cites>FETCH-LOGICAL-c498t-2d09f25c11fd30a2e124d7d1d12fe0dcd3d8afaee2851217ed22b0020606d55a3</cites><orcidid>0000-0001-8124-5234 ; 0000-0002-4389-2921 ; 0000-0002-9462-4724 ; 0000-0003-0264-2640 ; 0000-0002-7912-4027 ; 0000-0002-1559-066X ; 000000021559066X ; 0000000302642640 ; 0000000279124027 ; 0000000294624724 ; 0000000181245234 ; 0000000243892921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30262632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1478138$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mandal, Jyotirmoy</creatorcontrib><creatorcontrib>Fu, Yanke</creatorcontrib><creatorcontrib>Overvig, Adam C</creatorcontrib><creatorcontrib>Jia, Mingxin</creatorcontrib><creatorcontrib>Sun, Kerui</creatorcontrib><creatorcontrib>Shi, Norman N</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Xiao, Xianghui</creatorcontrib><creatorcontrib>Yu, Nanfang</creatorcontrib><creatorcontrib>Yang, Yuan</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Passive daytime radiative cooling (PDRC) involves spontaneously cooling a surface by reflecting sunlight and radiating heat to the cold outer space. Current PDRC designs are promising alternatives to electrical cooling but are either inefficient or have limited applicability. We present a simple, inexpensive, and scalable phase inversion-based method for fabricating hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene) [P(VdF-HFP) ] coatings with excellent PDRC capability. High, substrate-independent hemispherical solar reflectances (0.96 ± 0.03) and long-wave infrared emittances (0.97 ± 0.02) allow for subambient temperature drops of ~6°C and cooling powers of ~96 watts per square meter (W m ) under solar intensities of 890 and 750 W m , respectively. The performance equals or surpasses those of state-of-the-art PDRC designs, and the technique offers a paint-like simplicity.</description><subject>Air conditioners</subject><subject>Air conditioning</subject><subject>Climate Control</subject><subject>Cooling</subject><subject>Daytime</subject><subject>Durability</subject><subject>Fluorides</subject><subject>MATERIALS SCIENCE</subject><subject>Polymer coatings</subject><subject>Protective coatings</subject><subject>Roofs</subject><subject>Substrates</subject><subject>Temperature</subject><subject>Vinylidene</subject><subject>Vinylidene fluoride</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0U1PGzEQBmALUUGgPfdWreiFy8LMOPt1rKK2VIrUCz1WlrHHxGh3HWwHKf8eo4QeerJkPzOj8SvEZ4QbRGpvk_E8G77ROg8NyhOxQBiaeiCQp2IBINu6h645FxcpPQGUt0GeiXMJ1FIraSH-3nmOOpqNN3oc99U2xLBL5Rj3E8fKBJ39_JgqF2K18Y-bQtg5_zY2V1udkn_hyup99hNXUVtffLkxIYyl7qP44PSY-NPxvBR_fny_X93V698_f62-rWuzHPpck4XBUWMQnZWgiZGWtrNokRyDNVbaXjvNTH2DhB1bogcAghZa2zRaXoqrQ9-QslflUzKbjQnzzCYrXHY9yr6g6wPaxvC845TV5JPhcdQzl50VIS7boSszCv36H30KuziXFYoi6pqWUBZ1e1AmhpQiO7WNftJxrxDUWzzqGI86xlMqvhz77h4mtv_8ex7yFSiDjkI</recordid><startdate>20181019</startdate><enddate>20181019</enddate><creator>Mandal, Jyotirmoy</creator><creator>Fu, Yanke</creator><creator>Overvig, Adam C</creator><creator>Jia, Mingxin</creator><creator>Sun, Kerui</creator><creator>Shi, Norman N</creator><creator>Zhou, Hua</creator><creator>Xiao, Xianghui</creator><creator>Yu, Nanfang</creator><creator>Yang, Yuan</creator><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8124-5234</orcidid><orcidid>https://orcid.org/0000-0002-4389-2921</orcidid><orcidid>https://orcid.org/0000-0002-9462-4724</orcidid><orcidid>https://orcid.org/0000-0003-0264-2640</orcidid><orcidid>https://orcid.org/0000-0002-7912-4027</orcidid><orcidid>https://orcid.org/0000-0002-1559-066X</orcidid><orcidid>https://orcid.org/000000021559066X</orcidid><orcidid>https://orcid.org/0000000302642640</orcidid><orcidid>https://orcid.org/0000000279124027</orcidid><orcidid>https://orcid.org/0000000294624724</orcidid><orcidid>https://orcid.org/0000000181245234</orcidid><orcidid>https://orcid.org/0000000243892921</orcidid></search><sort><creationdate>20181019</creationdate><title>Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling</title><author>Mandal, Jyotirmoy ; Fu, Yanke ; Overvig, Adam C ; Jia, Mingxin ; Sun, Kerui ; Shi, Norman N ; Zhou, Hua ; Xiao, Xianghui ; Yu, Nanfang ; Yang, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-2d09f25c11fd30a2e124d7d1d12fe0dcd3d8afaee2851217ed22b0020606d55a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air conditioners</topic><topic>Air conditioning</topic><topic>Climate Control</topic><topic>Cooling</topic><topic>Daytime</topic><topic>Durability</topic><topic>Fluorides</topic><topic>MATERIALS SCIENCE</topic><topic>Polymer coatings</topic><topic>Protective coatings</topic><topic>Roofs</topic><topic>Substrates</topic><topic>Temperature</topic><topic>Vinylidene</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandal, Jyotirmoy</creatorcontrib><creatorcontrib>Fu, Yanke</creatorcontrib><creatorcontrib>Overvig, Adam C</creatorcontrib><creatorcontrib>Jia, Mingxin</creatorcontrib><creatorcontrib>Sun, Kerui</creatorcontrib><creatorcontrib>Shi, Norman N</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Xiao, Xianghui</creatorcontrib><creatorcontrib>Yu, Nanfang</creatorcontrib><creatorcontrib>Yang, Yuan</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandal, Jyotirmoy</au><au>Fu, Yanke</au><au>Overvig, Adam C</au><au>Jia, Mingxin</au><au>Sun, Kerui</au><au>Shi, Norman N</au><au>Zhou, Hua</au><au>Xiao, Xianghui</au><au>Yu, Nanfang</au><au>Yang, Yuan</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2018-10-19</date><risdate>2018</risdate><volume>362</volume><issue>6412</issue><spage>315</spage><epage>319</epage><pages>315-319</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Passive daytime radiative cooling (PDRC) involves spontaneously cooling a surface by reflecting sunlight and radiating heat to the cold outer space. Current PDRC designs are promising alternatives to electrical cooling but are either inefficient or have limited applicability. We present a simple, inexpensive, and scalable phase inversion-based method for fabricating hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene) [P(VdF-HFP) ] coatings with excellent PDRC capability. High, substrate-independent hemispherical solar reflectances (0.96 ± 0.03) and long-wave infrared emittances (0.97 ± 0.02) allow for subambient temperature drops of ~6°C and cooling powers of ~96 watts per square meter (W m ) under solar intensities of 890 and 750 W m , respectively. The performance equals or surpasses those of state-of-the-art PDRC designs, and the technique offers a paint-like simplicity.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>30262632</pmid><doi>10.1126/science.aat9513</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8124-5234</orcidid><orcidid>https://orcid.org/0000-0002-4389-2921</orcidid><orcidid>https://orcid.org/0000-0002-9462-4724</orcidid><orcidid>https://orcid.org/0000-0003-0264-2640</orcidid><orcidid>https://orcid.org/0000-0002-7912-4027</orcidid><orcidid>https://orcid.org/0000-0002-1559-066X</orcidid><orcidid>https://orcid.org/000000021559066X</orcidid><orcidid>https://orcid.org/0000000302642640</orcidid><orcidid>https://orcid.org/0000000279124027</orcidid><orcidid>https://orcid.org/0000000294624724</orcidid><orcidid>https://orcid.org/0000000181245234</orcidid><orcidid>https://orcid.org/0000000243892921</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2018-10, Vol.362 (6412), p.315-319
issn 0036-8075
1095-9203
language eng
recordid cdi_osti_scitechconnect_1478138
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Air conditioners
Air conditioning
Climate Control
Cooling
Daytime
Durability
Fluorides
MATERIALS SCIENCE
Polymer coatings
Protective coatings
Roofs
Substrates
Temperature
Vinylidene
Vinylidene fluoride
title Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A05%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchically%20porous%20polymer%20coatings%20for%20highly%20efficient%20passive%20daytime%20radiative%20cooling&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Mandal,%20Jyotirmoy&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2018-10-19&rft.volume=362&rft.issue=6412&rft.spage=315&rft.epage=319&rft.pages=315-319&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aat9513&rft_dat=%3Cproquest_osti_%3E2114697285%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2122756213&rft_id=info:pmid/30262632&rfr_iscdi=true