Carbon nanotubes as emerging quantum-light sources
Progress in quantum computing and quantum cryptography requires efficient, electrically triggered, single-photon sources at room temperature in the telecom wavelengths. It has been long known that semiconducting single-wall carbon nanotubes (SWCNTs) display strong excitonic binding and emit light ov...
Gespeichert in:
Veröffentlicht in: | Nature materials 2018-08, Vol.17 (8), p.663-670 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Progress in quantum computing and quantum cryptography requires efficient, electrically triggered, single-photon sources at room temperature in the telecom wavelengths. It has been long known that semiconducting single-wall carbon nanotubes (SWCNTs) display strong excitonic binding and emit light over a broad range of wavelengths, but their use has been hampered by a low quantum yield and a high sensitivity to spectral diffusion and blinking. In this Perspective, we discuss recent advances in the mastering of SWCNT optical properties by chemistry, electrical contacting and resonator coupling towards advancing their use as quantum light sources. We describe the latest results in terms of single-photon purity, generation efficiency and indistinguishability. Finally, we consider the main fundamental challenges stemming from the unique properties of SWCNTs and the most promising roads for SWCNT-based chip integrated quantum photonic sources.
This Perspective describes the recent advances in understanding and controlling the properties of single-wall carbon nanotubes as well as the progress towards the fabrication of new electrically driven single-photon sources. |
---|---|
ISSN: | 1476-1122 1476-4660 |
DOI: | 10.1038/s41563-018-0109-2 |