Energy density from second shape variations of the von Neumann entropy
We compute the local second variation of the von Neumann entropy of a region in theories with a gravity dual. For null variations our formula says that the diagonal part of the quantum null energy condition (QNEC) is saturated in every state, thus providing an equivalence between energy and entropy....
Gespeichert in:
Veröffentlicht in: | Physical review. D 2018-10, Vol.98 (8), Article 086013 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Physical review. D |
container_volume | 98 |
creator | Leichenauer, Stefan Levine, Adam Shahbazi-Moghaddam, Arvin |
description | We compute the local second variation of the von Neumann entropy of a region in theories with a gravity dual. For null variations our formula says that the diagonal part of the quantum null energy condition (QNEC) is saturated in every state, thus providing an equivalence between energy and entropy. We prove that the formula holds at leading order in 1/N and further argue that it will not be affected at higher orders. We conjecture that the QNEC is saturated in all interacting theories. We also discuss the special case of free theories, and the implications of our formula for the averaged null energy condition, quantum focusing conjecture (QFC), and gravitational equations of motion. We show that the leading-order gravitational equations of motion, Einstein’s equations, are equivalent to the leading-order saturation of the QFC for Planck-width deformations. |
doi_str_mv | 10.1103/PhysRevD.98.086013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1477552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2131204293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-3abdd59801f00fe72f714e22a882c6e7b301bf3b20383810ebf6f94764e618d43</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOb-gFdBrzvPSbo2vZS5qTBURK9DP05sh0tmkg36761UvTovh4eXl4exS4Q5Isibl7YPr3S8mxdqDioDlCdsItIcEgBRnP5nhHM2C2ELQ8ygyBEnbL2y5D963pANXey58W7HA9XONjy05Z74sfRdGTtnA3eGx3b4OMuf6LArreVko3f7_oKdmfIz0Oz3Ttn7evW2fEg2z_ePy9tNUqcZxkSWVdMsCgVoAAzlwuSYkhClUqLOKK8kYGVkJUAqqRCoMpkp0jxLKUPVpHLKrsZeF2KnQ91FqtthrKU6akzzfLEQA3Q9Qnvvvg4Uot66g7fDLi1QooBUFHKgxEjV3oXgyei973al7zWC_vGq_7zqQunRq_wGfYJrlQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131204293</pqid></control><display><type>article</type><title>Energy density from second shape variations of the von Neumann entropy</title><source>APS_美国物理学会期刊</source><creator>Leichenauer, Stefan ; Levine, Adam ; Shahbazi-Moghaddam, Arvin</creator><creatorcontrib>Leichenauer, Stefan ; Levine, Adam ; Shahbazi-Moghaddam, Arvin</creatorcontrib><description>We compute the local second variation of the von Neumann entropy of a region in theories with a gravity dual. For null variations our formula says that the diagonal part of the quantum null energy condition (QNEC) is saturated in every state, thus providing an equivalence between energy and entropy. We prove that the formula holds at leading order in 1/N and further argue that it will not be affected at higher orders. We conjecture that the QNEC is saturated in all interacting theories. We also discuss the special case of free theories, and the implications of our formula for the averaged null energy condition, quantum focusing conjecture (QFC), and gravitational equations of motion. We show that the leading-order gravitational equations of motion, Einstein’s equations, are equivalent to the leading-order saturation of the QFC for Planck-width deformations.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.98.086013</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Deformation ; Entropy ; Equations of motion ; Equivalence ; Flux density ; Formulas (mathematics) ; Gravitation ; Mathematical analysis</subject><ispartof>Physical review. D, 2018-10, Vol.98 (8), Article 086013</ispartof><rights>Copyright American Physical Society Oct 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-3abdd59801f00fe72f714e22a882c6e7b301bf3b20383810ebf6f94764e618d43</citedby><cites>FETCH-LOGICAL-c461t-3abdd59801f00fe72f714e22a882c6e7b301bf3b20383810ebf6f94764e618d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1477552$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Leichenauer, Stefan</creatorcontrib><creatorcontrib>Levine, Adam</creatorcontrib><creatorcontrib>Shahbazi-Moghaddam, Arvin</creatorcontrib><title>Energy density from second shape variations of the von Neumann entropy</title><title>Physical review. D</title><description>We compute the local second variation of the von Neumann entropy of a region in theories with a gravity dual. For null variations our formula says that the diagonal part of the quantum null energy condition (QNEC) is saturated in every state, thus providing an equivalence between energy and entropy. We prove that the formula holds at leading order in 1/N and further argue that it will not be affected at higher orders. We conjecture that the QNEC is saturated in all interacting theories. We also discuss the special case of free theories, and the implications of our formula for the averaged null energy condition, quantum focusing conjecture (QFC), and gravitational equations of motion. We show that the leading-order gravitational equations of motion, Einstein’s equations, are equivalent to the leading-order saturation of the QFC for Planck-width deformations.</description><subject>Deformation</subject><subject>Entropy</subject><subject>Equations of motion</subject><subject>Equivalence</subject><subject>Flux density</subject><subject>Formulas (mathematics)</subject><subject>Gravitation</subject><subject>Mathematical analysis</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOOb-gFdBrzvPSbo2vZS5qTBURK9DP05sh0tmkg36761UvTovh4eXl4exS4Q5Isibl7YPr3S8mxdqDioDlCdsItIcEgBRnP5nhHM2C2ELQ8ygyBEnbL2y5D963pANXey58W7HA9XONjy05Z74sfRdGTtnA3eGx3b4OMuf6LArreVko3f7_oKdmfIz0Oz3Ttn7evW2fEg2z_ePy9tNUqcZxkSWVdMsCgVoAAzlwuSYkhClUqLOKK8kYGVkJUAqqRCoMpkp0jxLKUPVpHLKrsZeF2KnQ91FqtthrKU6akzzfLEQA3Q9Qnvvvg4Uot66g7fDLi1QooBUFHKgxEjV3oXgyei973al7zWC_vGq_7zqQunRq_wGfYJrlQ</recordid><startdate>20181010</startdate><enddate>20181010</enddate><creator>Leichenauer, Stefan</creator><creator>Levine, Adam</creator><creator>Shahbazi-Moghaddam, Arvin</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20181010</creationdate><title>Energy density from second shape variations of the von Neumann entropy</title><author>Leichenauer, Stefan ; Levine, Adam ; Shahbazi-Moghaddam, Arvin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-3abdd59801f00fe72f714e22a882c6e7b301bf3b20383810ebf6f94764e618d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Deformation</topic><topic>Entropy</topic><topic>Equations of motion</topic><topic>Equivalence</topic><topic>Flux density</topic><topic>Formulas (mathematics)</topic><topic>Gravitation</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leichenauer, Stefan</creatorcontrib><creatorcontrib>Levine, Adam</creatorcontrib><creatorcontrib>Shahbazi-Moghaddam, Arvin</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leichenauer, Stefan</au><au>Levine, Adam</au><au>Shahbazi-Moghaddam, Arvin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy density from second shape variations of the von Neumann entropy</atitle><jtitle>Physical review. D</jtitle><date>2018-10-10</date><risdate>2018</risdate><volume>98</volume><issue>8</issue><artnum>086013</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We compute the local second variation of the von Neumann entropy of a region in theories with a gravity dual. For null variations our formula says that the diagonal part of the quantum null energy condition (QNEC) is saturated in every state, thus providing an equivalence between energy and entropy. We prove that the formula holds at leading order in 1/N and further argue that it will not be affected at higher orders. We conjecture that the QNEC is saturated in all interacting theories. We also discuss the special case of free theories, and the implications of our formula for the averaged null energy condition, quantum focusing conjecture (QFC), and gravitational equations of motion. We show that the leading-order gravitational equations of motion, Einstein’s equations, are equivalent to the leading-order saturation of the QFC for Planck-width deformations.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.98.086013</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2018-10, Vol.98 (8), Article 086013 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_osti_scitechconnect_1477552 |
source | APS_美国物理学会期刊 |
subjects | Deformation Entropy Equations of motion Equivalence Flux density Formulas (mathematics) Gravitation Mathematical analysis |
title | Energy density from second shape variations of the von Neumann entropy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20density%20from%20second%20shape%20variations%20of%20the%20von%20Neumann%20entropy&rft.jtitle=Physical%20review.%20D&rft.au=Leichenauer,%20Stefan&rft.date=2018-10-10&rft.volume=98&rft.issue=8&rft.artnum=086013&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.98.086013&rft_dat=%3Cproquest_osti_%3E2131204293%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2131204293&rft_id=info:pmid/&rfr_iscdi=true |