Energy density from second shape variations of the von Neumann entropy

We compute the local second variation of the von Neumann entropy of a region in theories with a gravity dual. For null variations our formula says that the diagonal part of the quantum null energy condition (QNEC) is saturated in every state, thus providing an equivalence between energy and entropy....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2018-10, Vol.98 (8), Article 086013
Hauptverfasser: Leichenauer, Stefan, Levine, Adam, Shahbazi-Moghaddam, Arvin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physical review. D
container_volume 98
creator Leichenauer, Stefan
Levine, Adam
Shahbazi-Moghaddam, Arvin
description We compute the local second variation of the von Neumann entropy of a region in theories with a gravity dual. For null variations our formula says that the diagonal part of the quantum null energy condition (QNEC) is saturated in every state, thus providing an equivalence between energy and entropy. We prove that the formula holds at leading order in 1/N and further argue that it will not be affected at higher orders. We conjecture that the QNEC is saturated in all interacting theories. We also discuss the special case of free theories, and the implications of our formula for the averaged null energy condition, quantum focusing conjecture (QFC), and gravitational equations of motion. We show that the leading-order gravitational equations of motion, Einstein’s equations, are equivalent to the leading-order saturation of the QFC for Planck-width deformations.
doi_str_mv 10.1103/PhysRevD.98.086013
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1477552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2131204293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-3abdd59801f00fe72f714e22a882c6e7b301bf3b20383810ebf6f94764e618d43</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOb-gFdBrzvPSbo2vZS5qTBURK9DP05sh0tmkg36761UvTovh4eXl4exS4Q5Isibl7YPr3S8mxdqDioDlCdsItIcEgBRnP5nhHM2C2ELQ8ygyBEnbL2y5D963pANXey58W7HA9XONjy05Z74sfRdGTtnA3eGx3b4OMuf6LArreVko3f7_oKdmfIz0Oz3Ttn7evW2fEg2z_ePy9tNUqcZxkSWVdMsCgVoAAzlwuSYkhClUqLOKK8kYGVkJUAqqRCoMpkp0jxLKUPVpHLKrsZeF2KnQ91FqtthrKU6akzzfLEQA3Q9Qnvvvg4Uot66g7fDLi1QooBUFHKgxEjV3oXgyei973al7zWC_vGq_7zqQunRq_wGfYJrlQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131204293</pqid></control><display><type>article</type><title>Energy density from second shape variations of the von Neumann entropy</title><source>APS_美国物理学会期刊</source><creator>Leichenauer, Stefan ; Levine, Adam ; Shahbazi-Moghaddam, Arvin</creator><creatorcontrib>Leichenauer, Stefan ; Levine, Adam ; Shahbazi-Moghaddam, Arvin</creatorcontrib><description>We compute the local second variation of the von Neumann entropy of a region in theories with a gravity dual. For null variations our formula says that the diagonal part of the quantum null energy condition (QNEC) is saturated in every state, thus providing an equivalence between energy and entropy. We prove that the formula holds at leading order in 1/N and further argue that it will not be affected at higher orders. We conjecture that the QNEC is saturated in all interacting theories. We also discuss the special case of free theories, and the implications of our formula for the averaged null energy condition, quantum focusing conjecture (QFC), and gravitational equations of motion. We show that the leading-order gravitational equations of motion, Einstein’s equations, are equivalent to the leading-order saturation of the QFC for Planck-width deformations.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.98.086013</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Deformation ; Entropy ; Equations of motion ; Equivalence ; Flux density ; Formulas (mathematics) ; Gravitation ; Mathematical analysis</subject><ispartof>Physical review. D, 2018-10, Vol.98 (8), Article 086013</ispartof><rights>Copyright American Physical Society Oct 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-3abdd59801f00fe72f714e22a882c6e7b301bf3b20383810ebf6f94764e618d43</citedby><cites>FETCH-LOGICAL-c461t-3abdd59801f00fe72f714e22a882c6e7b301bf3b20383810ebf6f94764e618d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1477552$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Leichenauer, Stefan</creatorcontrib><creatorcontrib>Levine, Adam</creatorcontrib><creatorcontrib>Shahbazi-Moghaddam, Arvin</creatorcontrib><title>Energy density from second shape variations of the von Neumann entropy</title><title>Physical review. D</title><description>We compute the local second variation of the von Neumann entropy of a region in theories with a gravity dual. For null variations our formula says that the diagonal part of the quantum null energy condition (QNEC) is saturated in every state, thus providing an equivalence between energy and entropy. We prove that the formula holds at leading order in 1/N and further argue that it will not be affected at higher orders. We conjecture that the QNEC is saturated in all interacting theories. We also discuss the special case of free theories, and the implications of our formula for the averaged null energy condition, quantum focusing conjecture (QFC), and gravitational equations of motion. We show that the leading-order gravitational equations of motion, Einstein’s equations, are equivalent to the leading-order saturation of the QFC for Planck-width deformations.</description><subject>Deformation</subject><subject>Entropy</subject><subject>Equations of motion</subject><subject>Equivalence</subject><subject>Flux density</subject><subject>Formulas (mathematics)</subject><subject>Gravitation</subject><subject>Mathematical analysis</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOOb-gFdBrzvPSbo2vZS5qTBURK9DP05sh0tmkg36761UvTovh4eXl4exS4Q5Isibl7YPr3S8mxdqDioDlCdsItIcEgBRnP5nhHM2C2ELQ8ygyBEnbL2y5D963pANXey58W7HA9XONjy05Z74sfRdGTtnA3eGx3b4OMuf6LArreVko3f7_oKdmfIz0Oz3Ttn7evW2fEg2z_ePy9tNUqcZxkSWVdMsCgVoAAzlwuSYkhClUqLOKK8kYGVkJUAqqRCoMpkp0jxLKUPVpHLKrsZeF2KnQ91FqtthrKU6akzzfLEQA3Q9Qnvvvg4Uot66g7fDLi1QooBUFHKgxEjV3oXgyei973al7zWC_vGq_7zqQunRq_wGfYJrlQ</recordid><startdate>20181010</startdate><enddate>20181010</enddate><creator>Leichenauer, Stefan</creator><creator>Levine, Adam</creator><creator>Shahbazi-Moghaddam, Arvin</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20181010</creationdate><title>Energy density from second shape variations of the von Neumann entropy</title><author>Leichenauer, Stefan ; Levine, Adam ; Shahbazi-Moghaddam, Arvin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-3abdd59801f00fe72f714e22a882c6e7b301bf3b20383810ebf6f94764e618d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Deformation</topic><topic>Entropy</topic><topic>Equations of motion</topic><topic>Equivalence</topic><topic>Flux density</topic><topic>Formulas (mathematics)</topic><topic>Gravitation</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leichenauer, Stefan</creatorcontrib><creatorcontrib>Levine, Adam</creatorcontrib><creatorcontrib>Shahbazi-Moghaddam, Arvin</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leichenauer, Stefan</au><au>Levine, Adam</au><au>Shahbazi-Moghaddam, Arvin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy density from second shape variations of the von Neumann entropy</atitle><jtitle>Physical review. D</jtitle><date>2018-10-10</date><risdate>2018</risdate><volume>98</volume><issue>8</issue><artnum>086013</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We compute the local second variation of the von Neumann entropy of a region in theories with a gravity dual. For null variations our formula says that the diagonal part of the quantum null energy condition (QNEC) is saturated in every state, thus providing an equivalence between energy and entropy. We prove that the formula holds at leading order in 1/N and further argue that it will not be affected at higher orders. We conjecture that the QNEC is saturated in all interacting theories. We also discuss the special case of free theories, and the implications of our formula for the averaged null energy condition, quantum focusing conjecture (QFC), and gravitational equations of motion. We show that the leading-order gravitational equations of motion, Einstein’s equations, are equivalent to the leading-order saturation of the QFC for Planck-width deformations.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.98.086013</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2018-10, Vol.98 (8), Article 086013
issn 2470-0010
2470-0029
language eng
recordid cdi_osti_scitechconnect_1477552
source APS_美国物理学会期刊
subjects Deformation
Entropy
Equations of motion
Equivalence
Flux density
Formulas (mathematics)
Gravitation
Mathematical analysis
title Energy density from second shape variations of the von Neumann entropy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20density%20from%20second%20shape%20variations%20of%20the%20von%20Neumann%20entropy&rft.jtitle=Physical%20review.%20D&rft.au=Leichenauer,%20Stefan&rft.date=2018-10-10&rft.volume=98&rft.issue=8&rft.artnum=086013&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.98.086013&rft_dat=%3Cproquest_osti_%3E2131204293%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2131204293&rft_id=info:pmid/&rfr_iscdi=true