Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs

The second-order conductivity of a material, σ(2), relating current to the square of electric field, is nonzero only when inversion symmetry is broken, unlike the conventional linear conductivity. Second-order nonlinear optical responses are thus powerful tools in basic research as probes of symmetr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-10, Vol.98 (16), p.165113, Article 165113
Hauptverfasser: Patankar, Shreyas, Wu, Liang, Lu, Baozhu, Rai, Manita, Tran, Jason D., Morimoto, T., Parker, Daniel E., Grushin, Adolfo G., Nair, N. L., Analytis, J. G., Moore, J. E., Orenstein, J., Torchinsky, D. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 165113
container_title Physical review. B
container_volume 98
creator Patankar, Shreyas
Wu, Liang
Lu, Baozhu
Rai, Manita
Tran, Jason D.
Morimoto, T.
Parker, Daniel E.
Grushin, Adolfo G.
Nair, N. L.
Analytis, J. G.
Moore, J. E.
Orenstein, J.
Torchinsky, D. H.
description The second-order conductivity of a material, σ(2), relating current to the square of electric field, is nonzero only when inversion symmetry is broken, unlike the conventional linear conductivity. Second-order nonlinear optical responses are thus powerful tools in basic research as probes of symmetry breaking; they are also central to optical technology as the basis for generating photocurrents and frequency doubling. The recent surge of interest in Weyl semimetals with acentric crystal structures has led to the discovery of a host of σ(2)-related phenomena in this class of materials, such as polarization-selective conversion of light to dc current (photogalvanic effects) and the observation of giant second-harmonic generation (SHG) efficiency in TaAs at photon energy 1.5 eV. Here, we present measurements of the SHG spectrum of TaAs, revealing that the response at 1.5 eV corresponds to the high-energy tail of a resonance at 0.7 eV, at which point the second harmonic conductivity is approximately 200 times larger than seen in the standard candle nonlinear crystal, GaAs. This remarkably large SHG response provokes the question of ultimate limits on σ(2), which we address by a new theorem relating frequency-integrated nonlinear response functions to the third cumulant (or “skewness”) of the polarization distribution function in the ground state.
doi_str_mv 10.1103/PhysRevB.98.165113
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1477550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132228303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-ed04a96335f2ad5e4c543db03aae61663d45567dfd1495ceb8e26e9e45a642323</originalsourceid><addsrcrecordid>eNo90E1Lw0AQBuAgCpbaP-Ap6MlD6n4ne2yLWqGglIrHZbuZkC3pbs1uC_n3pkR7mmF4eGHeJLnHaIoxos-fdRfWcJpPZTHFgmNMr5IRYUJmUgp5fdk5uk0mIewQQlggmSM5SuZrCN5pZyADV59nmfpDtEY3qfOusQ50a2OXWpfGGtJv6Jo0wN7uIfZko2fhLrmpdBNg8jfHydfry2axzFYfb--L2SozjImYQYmYloJSXhFdcmCGM1puEdUaBBaCloxzkZdViZnkBrYFEAESGNeCEUroOHkYcn2IVgVjI5jaeOfARIVZnnOOevQ0oFo36tDavW475bVVy9lKnW8IS1TQnJ9wbx8He2j9zxFCVDt_bF3_gyKYEkIKimivyKBM60NoobrEYqTO_av__pUs1NA__QV0Xngk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132228303</pqid></control><display><type>article</type><title>Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs</title><source>American Physical Society Journals</source><creator>Patankar, Shreyas ; Wu, Liang ; Lu, Baozhu ; Rai, Manita ; Tran, Jason D. ; Morimoto, T. ; Parker, Daniel E. ; Grushin, Adolfo G. ; Nair, N. L. ; Analytis, J. G. ; Moore, J. E. ; Orenstein, J. ; Torchinsky, D. H.</creator><creatorcontrib>Patankar, Shreyas ; Wu, Liang ; Lu, Baozhu ; Rai, Manita ; Tran, Jason D. ; Morimoto, T. ; Parker, Daniel E. ; Grushin, Adolfo G. ; Nair, N. L. ; Analytis, J. G. ; Moore, J. E. ; Orenstein, J. ; Torchinsky, D. H.</creatorcontrib><description>The second-order conductivity of a material, σ(2), relating current to the square of electric field, is nonzero only when inversion symmetry is broken, unlike the conventional linear conductivity. Second-order nonlinear optical responses are thus powerful tools in basic research as probes of symmetry breaking; they are also central to optical technology as the basis for generating photocurrents and frequency doubling. The recent surge of interest in Weyl semimetals with acentric crystal structures has led to the discovery of a host of σ(2)-related phenomena in this class of materials, such as polarization-selective conversion of light to dc current (photogalvanic effects) and the observation of giant second-harmonic generation (SHG) efficiency in TaAs at photon energy 1.5 eV. Here, we present measurements of the SHG spectrum of TaAs, revealing that the response at 1.5 eV corresponds to the high-energy tail of a resonance at 0.7 eV, at which point the second harmonic conductivity is approximately 200 times larger than seen in the standard candle nonlinear crystal, GaAs. This remarkably large SHG response provokes the question of ultimate limits on σ(2), which we address by a new theorem relating frequency-integrated nonlinear response functions to the third cumulant (or “skewness”) of the polarization distribution function in the ground state.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.98.165113</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Broken symmetry ; Condensed Matter ; Crystal structure ; Distribution functions ; Electric fields ; Energy conversion efficiency ; Materials selection ; Metalloids ; Nonlinear response ; Nonlinearity ; Physics ; Polarization ; Response functions ; Second harmonic generation</subject><ispartof>Physical review. B, 2018-10, Vol.98 (16), p.165113, Article 165113</ispartof><rights>Copyright American Physical Society Oct 15, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-ed04a96335f2ad5e4c543db03aae61663d45567dfd1495ceb8e26e9e45a642323</citedby><cites>FETCH-LOGICAL-c446t-ed04a96335f2ad5e4c543db03aae61663d45567dfd1495ceb8e26e9e45a642323</cites><orcidid>0000-0001-7678-7100 ; 0000-0001-7555-5674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01908375$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1477550$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Patankar, Shreyas</creatorcontrib><creatorcontrib>Wu, Liang</creatorcontrib><creatorcontrib>Lu, Baozhu</creatorcontrib><creatorcontrib>Rai, Manita</creatorcontrib><creatorcontrib>Tran, Jason D.</creatorcontrib><creatorcontrib>Morimoto, T.</creatorcontrib><creatorcontrib>Parker, Daniel E.</creatorcontrib><creatorcontrib>Grushin, Adolfo G.</creatorcontrib><creatorcontrib>Nair, N. L.</creatorcontrib><creatorcontrib>Analytis, J. G.</creatorcontrib><creatorcontrib>Moore, J. E.</creatorcontrib><creatorcontrib>Orenstein, J.</creatorcontrib><creatorcontrib>Torchinsky, D. H.</creatorcontrib><title>Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs</title><title>Physical review. B</title><description>The second-order conductivity of a material, σ(2), relating current to the square of electric field, is nonzero only when inversion symmetry is broken, unlike the conventional linear conductivity. Second-order nonlinear optical responses are thus powerful tools in basic research as probes of symmetry breaking; they are also central to optical technology as the basis for generating photocurrents and frequency doubling. The recent surge of interest in Weyl semimetals with acentric crystal structures has led to the discovery of a host of σ(2)-related phenomena in this class of materials, such as polarization-selective conversion of light to dc current (photogalvanic effects) and the observation of giant second-harmonic generation (SHG) efficiency in TaAs at photon energy 1.5 eV. Here, we present measurements of the SHG spectrum of TaAs, revealing that the response at 1.5 eV corresponds to the high-energy tail of a resonance at 0.7 eV, at which point the second harmonic conductivity is approximately 200 times larger than seen in the standard candle nonlinear crystal, GaAs. This remarkably large SHG response provokes the question of ultimate limits on σ(2), which we address by a new theorem relating frequency-integrated nonlinear response functions to the third cumulant (or “skewness”) of the polarization distribution function in the ground state.</description><subject>Broken symmetry</subject><subject>Condensed Matter</subject><subject>Crystal structure</subject><subject>Distribution functions</subject><subject>Electric fields</subject><subject>Energy conversion efficiency</subject><subject>Materials selection</subject><subject>Metalloids</subject><subject>Nonlinear response</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Polarization</subject><subject>Response functions</subject><subject>Second harmonic generation</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo90E1Lw0AQBuAgCpbaP-Ap6MlD6n4ne2yLWqGglIrHZbuZkC3pbs1uC_n3pkR7mmF4eGHeJLnHaIoxos-fdRfWcJpPZTHFgmNMr5IRYUJmUgp5fdk5uk0mIewQQlggmSM5SuZrCN5pZyADV59nmfpDtEY3qfOusQ50a2OXWpfGGtJv6Jo0wN7uIfZko2fhLrmpdBNg8jfHydfry2axzFYfb--L2SozjImYQYmYloJSXhFdcmCGM1puEdUaBBaCloxzkZdViZnkBrYFEAESGNeCEUroOHkYcn2IVgVjI5jaeOfARIVZnnOOevQ0oFo36tDavW475bVVy9lKnW8IS1TQnJ9wbx8He2j9zxFCVDt_bF3_gyKYEkIKimivyKBM60NoobrEYqTO_av__pUs1NA__QV0Xngk</recordid><startdate>20181010</startdate><enddate>20181010</enddate><creator>Patankar, Shreyas</creator><creator>Wu, Liang</creator><creator>Lu, Baozhu</creator><creator>Rai, Manita</creator><creator>Tran, Jason D.</creator><creator>Morimoto, T.</creator><creator>Parker, Daniel E.</creator><creator>Grushin, Adolfo G.</creator><creator>Nair, N. L.</creator><creator>Analytis, J. G.</creator><creator>Moore, J. E.</creator><creator>Orenstein, J.</creator><creator>Torchinsky, D. H.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7678-7100</orcidid><orcidid>https://orcid.org/0000-0001-7555-5674</orcidid></search><sort><creationdate>20181010</creationdate><title>Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs</title><author>Patankar, Shreyas ; Wu, Liang ; Lu, Baozhu ; Rai, Manita ; Tran, Jason D. ; Morimoto, T. ; Parker, Daniel E. ; Grushin, Adolfo G. ; Nair, N. L. ; Analytis, J. G. ; Moore, J. E. ; Orenstein, J. ; Torchinsky, D. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-ed04a96335f2ad5e4c543db03aae61663d45567dfd1495ceb8e26e9e45a642323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Broken symmetry</topic><topic>Condensed Matter</topic><topic>Crystal structure</topic><topic>Distribution functions</topic><topic>Electric fields</topic><topic>Energy conversion efficiency</topic><topic>Materials selection</topic><topic>Metalloids</topic><topic>Nonlinear response</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Polarization</topic><topic>Response functions</topic><topic>Second harmonic generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patankar, Shreyas</creatorcontrib><creatorcontrib>Wu, Liang</creatorcontrib><creatorcontrib>Lu, Baozhu</creatorcontrib><creatorcontrib>Rai, Manita</creatorcontrib><creatorcontrib>Tran, Jason D.</creatorcontrib><creatorcontrib>Morimoto, T.</creatorcontrib><creatorcontrib>Parker, Daniel E.</creatorcontrib><creatorcontrib>Grushin, Adolfo G.</creatorcontrib><creatorcontrib>Nair, N. L.</creatorcontrib><creatorcontrib>Analytis, J. G.</creatorcontrib><creatorcontrib>Moore, J. E.</creatorcontrib><creatorcontrib>Orenstein, J.</creatorcontrib><creatorcontrib>Torchinsky, D. H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patankar, Shreyas</au><au>Wu, Liang</au><au>Lu, Baozhu</au><au>Rai, Manita</au><au>Tran, Jason D.</au><au>Morimoto, T.</au><au>Parker, Daniel E.</au><au>Grushin, Adolfo G.</au><au>Nair, N. L.</au><au>Analytis, J. G.</au><au>Moore, J. E.</au><au>Orenstein, J.</au><au>Torchinsky, D. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs</atitle><jtitle>Physical review. B</jtitle><date>2018-10-10</date><risdate>2018</risdate><volume>98</volume><issue>16</issue><spage>165113</spage><pages>165113-</pages><artnum>165113</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>The second-order conductivity of a material, σ(2), relating current to the square of electric field, is nonzero only when inversion symmetry is broken, unlike the conventional linear conductivity. Second-order nonlinear optical responses are thus powerful tools in basic research as probes of symmetry breaking; they are also central to optical technology as the basis for generating photocurrents and frequency doubling. The recent surge of interest in Weyl semimetals with acentric crystal structures has led to the discovery of a host of σ(2)-related phenomena in this class of materials, such as polarization-selective conversion of light to dc current (photogalvanic effects) and the observation of giant second-harmonic generation (SHG) efficiency in TaAs at photon energy 1.5 eV. Here, we present measurements of the SHG spectrum of TaAs, revealing that the response at 1.5 eV corresponds to the high-energy tail of a resonance at 0.7 eV, at which point the second harmonic conductivity is approximately 200 times larger than seen in the standard candle nonlinear crystal, GaAs. This remarkably large SHG response provokes the question of ultimate limits on σ(2), which we address by a new theorem relating frequency-integrated nonlinear response functions to the third cumulant (or “skewness”) of the polarization distribution function in the ground state.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.98.165113</doi><orcidid>https://orcid.org/0000-0001-7678-7100</orcidid><orcidid>https://orcid.org/0000-0001-7555-5674</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2018-10, Vol.98 (16), p.165113, Article 165113
issn 2469-9950
2469-9969
language eng
recordid cdi_osti_scitechconnect_1477550
source American Physical Society Journals
subjects Broken symmetry
Condensed Matter
Crystal structure
Distribution functions
Electric fields
Energy conversion efficiency
Materials selection
Metalloids
Nonlinear response
Nonlinearity
Physics
Polarization
Response functions
Second harmonic generation
title Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonance-enhanced%20optical%20nonlinearity%20in%20the%20Weyl%20semimetal%20TaAs&rft.jtitle=Physical%20review.%20B&rft.au=Patankar,%20Shreyas&rft.date=2018-10-10&rft.volume=98&rft.issue=16&rft.spage=165113&rft.pages=165113-&rft.artnum=165113&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.98.165113&rft_dat=%3Cproquest_osti_%3E2132228303%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132228303&rft_id=info:pmid/&rfr_iscdi=true