Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs
The second-order conductivity of a material, σ(2), relating current to the square of electric field, is nonzero only when inversion symmetry is broken, unlike the conventional linear conductivity. Second-order nonlinear optical responses are thus powerful tools in basic research as probes of symmetr...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2018-10, Vol.98 (16), p.165113, Article 165113 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 165113 |
container_title | Physical review. B |
container_volume | 98 |
creator | Patankar, Shreyas Wu, Liang Lu, Baozhu Rai, Manita Tran, Jason D. Morimoto, T. Parker, Daniel E. Grushin, Adolfo G. Nair, N. L. Analytis, J. G. Moore, J. E. Orenstein, J. Torchinsky, D. H. |
description | The second-order conductivity of a material, σ(2), relating current to the square of electric field, is nonzero only when inversion symmetry is broken, unlike the conventional linear conductivity. Second-order nonlinear optical responses are thus powerful tools in basic research as probes of symmetry breaking; they are also central to optical technology as the basis for generating photocurrents and frequency doubling. The recent surge of interest in Weyl semimetals with acentric crystal structures has led to the discovery of a host of σ(2)-related phenomena in this class of materials, such as polarization-selective conversion of light to dc current (photogalvanic effects) and the observation of giant second-harmonic generation (SHG) efficiency in TaAs at photon energy 1.5 eV. Here, we present measurements of the SHG spectrum of TaAs, revealing that the response at 1.5 eV corresponds to the high-energy tail of a resonance at 0.7 eV, at which point the second harmonic conductivity is approximately 200 times larger than seen in the standard candle nonlinear crystal, GaAs. This remarkably large SHG response provokes the question of ultimate limits on σ(2), which we address by a new theorem relating frequency-integrated nonlinear response functions to the third cumulant (or “skewness”) of the polarization distribution function in the ground state. |
doi_str_mv | 10.1103/PhysRevB.98.165113 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1477550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132228303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-ed04a96335f2ad5e4c543db03aae61663d45567dfd1495ceb8e26e9e45a642323</originalsourceid><addsrcrecordid>eNo90E1Lw0AQBuAgCpbaP-Ap6MlD6n4ne2yLWqGglIrHZbuZkC3pbs1uC_n3pkR7mmF4eGHeJLnHaIoxos-fdRfWcJpPZTHFgmNMr5IRYUJmUgp5fdk5uk0mIewQQlggmSM5SuZrCN5pZyADV59nmfpDtEY3qfOusQ50a2OXWpfGGtJv6Jo0wN7uIfZko2fhLrmpdBNg8jfHydfry2axzFYfb--L2SozjImYQYmYloJSXhFdcmCGM1puEdUaBBaCloxzkZdViZnkBrYFEAESGNeCEUroOHkYcn2IVgVjI5jaeOfARIVZnnOOevQ0oFo36tDavW475bVVy9lKnW8IS1TQnJ9wbx8He2j9zxFCVDt_bF3_gyKYEkIKimivyKBM60NoobrEYqTO_av__pUs1NA__QV0Xngk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132228303</pqid></control><display><type>article</type><title>Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs</title><source>American Physical Society Journals</source><creator>Patankar, Shreyas ; Wu, Liang ; Lu, Baozhu ; Rai, Manita ; Tran, Jason D. ; Morimoto, T. ; Parker, Daniel E. ; Grushin, Adolfo G. ; Nair, N. L. ; Analytis, J. G. ; Moore, J. E. ; Orenstein, J. ; Torchinsky, D. H.</creator><creatorcontrib>Patankar, Shreyas ; Wu, Liang ; Lu, Baozhu ; Rai, Manita ; Tran, Jason D. ; Morimoto, T. ; Parker, Daniel E. ; Grushin, Adolfo G. ; Nair, N. L. ; Analytis, J. G. ; Moore, J. E. ; Orenstein, J. ; Torchinsky, D. H.</creatorcontrib><description>The second-order conductivity of a material, σ(2), relating current to the square of electric field, is nonzero only when inversion symmetry is broken, unlike the conventional linear conductivity. Second-order nonlinear optical responses are thus powerful tools in basic research as probes of symmetry breaking; they are also central to optical technology as the basis for generating photocurrents and frequency doubling. The recent surge of interest in Weyl semimetals with acentric crystal structures has led to the discovery of a host of σ(2)-related phenomena in this class of materials, such as polarization-selective conversion of light to dc current (photogalvanic effects) and the observation of giant second-harmonic generation (SHG) efficiency in TaAs at photon energy 1.5 eV. Here, we present measurements of the SHG spectrum of TaAs, revealing that the response at 1.5 eV corresponds to the high-energy tail of a resonance at 0.7 eV, at which point the second harmonic conductivity is approximately 200 times larger than seen in the standard candle nonlinear crystal, GaAs. This remarkably large SHG response provokes the question of ultimate limits on σ(2), which we address by a new theorem relating frequency-integrated nonlinear response functions to the third cumulant (or “skewness”) of the polarization distribution function in the ground state.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.98.165113</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Broken symmetry ; Condensed Matter ; Crystal structure ; Distribution functions ; Electric fields ; Energy conversion efficiency ; Materials selection ; Metalloids ; Nonlinear response ; Nonlinearity ; Physics ; Polarization ; Response functions ; Second harmonic generation</subject><ispartof>Physical review. B, 2018-10, Vol.98 (16), p.165113, Article 165113</ispartof><rights>Copyright American Physical Society Oct 15, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-ed04a96335f2ad5e4c543db03aae61663d45567dfd1495ceb8e26e9e45a642323</citedby><cites>FETCH-LOGICAL-c446t-ed04a96335f2ad5e4c543db03aae61663d45567dfd1495ceb8e26e9e45a642323</cites><orcidid>0000-0001-7678-7100 ; 0000-0001-7555-5674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01908375$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1477550$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Patankar, Shreyas</creatorcontrib><creatorcontrib>Wu, Liang</creatorcontrib><creatorcontrib>Lu, Baozhu</creatorcontrib><creatorcontrib>Rai, Manita</creatorcontrib><creatorcontrib>Tran, Jason D.</creatorcontrib><creatorcontrib>Morimoto, T.</creatorcontrib><creatorcontrib>Parker, Daniel E.</creatorcontrib><creatorcontrib>Grushin, Adolfo G.</creatorcontrib><creatorcontrib>Nair, N. L.</creatorcontrib><creatorcontrib>Analytis, J. G.</creatorcontrib><creatorcontrib>Moore, J. E.</creatorcontrib><creatorcontrib>Orenstein, J.</creatorcontrib><creatorcontrib>Torchinsky, D. H.</creatorcontrib><title>Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs</title><title>Physical review. B</title><description>The second-order conductivity of a material, σ(2), relating current to the square of electric field, is nonzero only when inversion symmetry is broken, unlike the conventional linear conductivity. Second-order nonlinear optical responses are thus powerful tools in basic research as probes of symmetry breaking; they are also central to optical technology as the basis for generating photocurrents and frequency doubling. The recent surge of interest in Weyl semimetals with acentric crystal structures has led to the discovery of a host of σ(2)-related phenomena in this class of materials, such as polarization-selective conversion of light to dc current (photogalvanic effects) and the observation of giant second-harmonic generation (SHG) efficiency in TaAs at photon energy 1.5 eV. Here, we present measurements of the SHG spectrum of TaAs, revealing that the response at 1.5 eV corresponds to the high-energy tail of a resonance at 0.7 eV, at which point the second harmonic conductivity is approximately 200 times larger than seen in the standard candle nonlinear crystal, GaAs. This remarkably large SHG response provokes the question of ultimate limits on σ(2), which we address by a new theorem relating frequency-integrated nonlinear response functions to the third cumulant (or “skewness”) of the polarization distribution function in the ground state.</description><subject>Broken symmetry</subject><subject>Condensed Matter</subject><subject>Crystal structure</subject><subject>Distribution functions</subject><subject>Electric fields</subject><subject>Energy conversion efficiency</subject><subject>Materials selection</subject><subject>Metalloids</subject><subject>Nonlinear response</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Polarization</subject><subject>Response functions</subject><subject>Second harmonic generation</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo90E1Lw0AQBuAgCpbaP-Ap6MlD6n4ne2yLWqGglIrHZbuZkC3pbs1uC_n3pkR7mmF4eGHeJLnHaIoxos-fdRfWcJpPZTHFgmNMr5IRYUJmUgp5fdk5uk0mIewQQlggmSM5SuZrCN5pZyADV59nmfpDtEY3qfOusQ50a2OXWpfGGtJv6Jo0wN7uIfZko2fhLrmpdBNg8jfHydfry2axzFYfb--L2SozjImYQYmYloJSXhFdcmCGM1puEdUaBBaCloxzkZdViZnkBrYFEAESGNeCEUroOHkYcn2IVgVjI5jaeOfARIVZnnOOevQ0oFo36tDavW475bVVy9lKnW8IS1TQnJ9wbx8He2j9zxFCVDt_bF3_gyKYEkIKimivyKBM60NoobrEYqTO_av__pUs1NA__QV0Xngk</recordid><startdate>20181010</startdate><enddate>20181010</enddate><creator>Patankar, Shreyas</creator><creator>Wu, Liang</creator><creator>Lu, Baozhu</creator><creator>Rai, Manita</creator><creator>Tran, Jason D.</creator><creator>Morimoto, T.</creator><creator>Parker, Daniel E.</creator><creator>Grushin, Adolfo G.</creator><creator>Nair, N. L.</creator><creator>Analytis, J. G.</creator><creator>Moore, J. E.</creator><creator>Orenstein, J.</creator><creator>Torchinsky, D. H.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7678-7100</orcidid><orcidid>https://orcid.org/0000-0001-7555-5674</orcidid></search><sort><creationdate>20181010</creationdate><title>Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs</title><author>Patankar, Shreyas ; Wu, Liang ; Lu, Baozhu ; Rai, Manita ; Tran, Jason D. ; Morimoto, T. ; Parker, Daniel E. ; Grushin, Adolfo G. ; Nair, N. L. ; Analytis, J. G. ; Moore, J. E. ; Orenstein, J. ; Torchinsky, D. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-ed04a96335f2ad5e4c543db03aae61663d45567dfd1495ceb8e26e9e45a642323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Broken symmetry</topic><topic>Condensed Matter</topic><topic>Crystal structure</topic><topic>Distribution functions</topic><topic>Electric fields</topic><topic>Energy conversion efficiency</topic><topic>Materials selection</topic><topic>Metalloids</topic><topic>Nonlinear response</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Polarization</topic><topic>Response functions</topic><topic>Second harmonic generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patankar, Shreyas</creatorcontrib><creatorcontrib>Wu, Liang</creatorcontrib><creatorcontrib>Lu, Baozhu</creatorcontrib><creatorcontrib>Rai, Manita</creatorcontrib><creatorcontrib>Tran, Jason D.</creatorcontrib><creatorcontrib>Morimoto, T.</creatorcontrib><creatorcontrib>Parker, Daniel E.</creatorcontrib><creatorcontrib>Grushin, Adolfo G.</creatorcontrib><creatorcontrib>Nair, N. L.</creatorcontrib><creatorcontrib>Analytis, J. G.</creatorcontrib><creatorcontrib>Moore, J. E.</creatorcontrib><creatorcontrib>Orenstein, J.</creatorcontrib><creatorcontrib>Torchinsky, D. H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patankar, Shreyas</au><au>Wu, Liang</au><au>Lu, Baozhu</au><au>Rai, Manita</au><au>Tran, Jason D.</au><au>Morimoto, T.</au><au>Parker, Daniel E.</au><au>Grushin, Adolfo G.</au><au>Nair, N. L.</au><au>Analytis, J. G.</au><au>Moore, J. E.</au><au>Orenstein, J.</au><au>Torchinsky, D. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs</atitle><jtitle>Physical review. B</jtitle><date>2018-10-10</date><risdate>2018</risdate><volume>98</volume><issue>16</issue><spage>165113</spage><pages>165113-</pages><artnum>165113</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>The second-order conductivity of a material, σ(2), relating current to the square of electric field, is nonzero only when inversion symmetry is broken, unlike the conventional linear conductivity. Second-order nonlinear optical responses are thus powerful tools in basic research as probes of symmetry breaking; they are also central to optical technology as the basis for generating photocurrents and frequency doubling. The recent surge of interest in Weyl semimetals with acentric crystal structures has led to the discovery of a host of σ(2)-related phenomena in this class of materials, such as polarization-selective conversion of light to dc current (photogalvanic effects) and the observation of giant second-harmonic generation (SHG) efficiency in TaAs at photon energy 1.5 eV. Here, we present measurements of the SHG spectrum of TaAs, revealing that the response at 1.5 eV corresponds to the high-energy tail of a resonance at 0.7 eV, at which point the second harmonic conductivity is approximately 200 times larger than seen in the standard candle nonlinear crystal, GaAs. This remarkably large SHG response provokes the question of ultimate limits on σ(2), which we address by a new theorem relating frequency-integrated nonlinear response functions to the third cumulant (or “skewness”) of the polarization distribution function in the ground state.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.98.165113</doi><orcidid>https://orcid.org/0000-0001-7678-7100</orcidid><orcidid>https://orcid.org/0000-0001-7555-5674</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2018-10, Vol.98 (16), p.165113, Article 165113 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_osti_scitechconnect_1477550 |
source | American Physical Society Journals |
subjects | Broken symmetry Condensed Matter Crystal structure Distribution functions Electric fields Energy conversion efficiency Materials selection Metalloids Nonlinear response Nonlinearity Physics Polarization Response functions Second harmonic generation |
title | Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonance-enhanced%20optical%20nonlinearity%20in%20the%20Weyl%20semimetal%20TaAs&rft.jtitle=Physical%20review.%20B&rft.au=Patankar,%20Shreyas&rft.date=2018-10-10&rft.volume=98&rft.issue=16&rft.spage=165113&rft.pages=165113-&rft.artnum=165113&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.98.165113&rft_dat=%3Cproquest_osti_%3E2132228303%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132228303&rft_id=info:pmid/&rfr_iscdi=true |