Scrape-off layer plasma and neutral characteristics and their interactions with walls for FNSF

•Peak heat fluxes less than 10MW/m2 on divertor plates and walls are possible with strong neon seeding.•Steady-state partial/complete detached divertor plasma solutions found for tilted/flat divertor plates.•Sputtering of plate/walls yields acceptable tungsten density at the core boundary for simple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fusion engineering and design 2018-10, Vol.135 (PB), p.380-393
Hauptverfasser: Rognlien, T.D., Rensink, M.E., Stotler, D.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 393
container_issue PB
container_start_page 380
container_title Fusion engineering and design
container_volume 135
creator Rognlien, T.D.
Rensink, M.E.
Stotler, D.P.
description •Peak heat fluxes less than 10MW/m2 on divertor plates and walls are possible with strong neon seeding.•Steady-state partial/complete detached divertor plasma solutions found for tilted/flat divertor plates.•Sputtering of plate/walls yields acceptable tungsten density at the core boundary for simple transport model. Simulations of the heat flux on plasma facing components from exhausting core plasma are reported for two possible Fusion Nuclear Science Facility (FNSF) divertor configurations. One configuration utilizes divertor plates strongly inclined with respect to the poloidal magnetic flux surfaces like that planned for ITER and results in a partially detached divertor-plasma. The second configuration has divertor plates orthogonal to the flux surfaces, which leads to a fully detached divertor-plasma if the width of the divertor region is sufficient. Both configurations use scrape-off layer impurity seeding to yield an acceptable peak heat flux of ∼10MW/m2 or smaller on the divertor plates and chamber walls. The roles of recycled hydrogenic atoms and molecules are investigated and distribution of sputtering tungsten throughout the edge region modeled. The simulations are performed with the UEDGE 2D transport code to model both plasma and neutral components with supplementary neutral modeling performed with the DEGAS 2 Monte Carlo code.
doi_str_mv 10.1016/j.fusengdes.2017.07.024
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1476857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379617307652</els_id><sourcerecordid>2123705064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-86d13820cd2b2d73ccc9bf41824db3f1236da96d976d1e9e813340529104872c3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKufwaDnrfmz3WyOUqwKRQ_q1ZAmszZlTWqSKv32Zq14FR4MzPxm8vIQOqdkQgltrtaTbpvAv1lIE0aomJAiVh-gEW0FrwSVzSEaEclIxYVsjtFJSmtSwKIRen0yUW-gCl2He72DiDe9Tu8aa2-xh22OusdmpaM2GaJL2Zn0M8srcBE7X7pl5IJP-MvlFf7SfZ9wFyKePzzNT9FRp_sEZ791jF7mN8-zu2rxeHs_u15UpqYyV21jKW8ZMZYtmRXcGCOXXU1bVtsl7yjjjdWysVIUECS0lPOaTJmkpG4FM3yMLvZ3Q3GoknEZzMoE78FkRWvRtFNRoMs9tInhYwspq3XYRl98KVaeEGRKmrpQYk-ZGFKK0KlNdO867hQlakhcrdVf4mpIXJEiNmxe7zeh_PTTQRyMgDdgXRx82OD-vfENPRuNkg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123705064</pqid></control><display><type>article</type><title>Scrape-off layer plasma and neutral characteristics and their interactions with walls for FNSF</title><source>Access via ScienceDirect (Elsevier)</source><creator>Rognlien, T.D. ; Rensink, M.E. ; Stotler, D.P.</creator><creatorcontrib>Rognlien, T.D. ; Rensink, M.E. ; Stotler, D.P. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>•Peak heat fluxes less than 10MW/m2 on divertor plates and walls are possible with strong neon seeding.•Steady-state partial/complete detached divertor plasma solutions found for tilted/flat divertor plates.•Sputtering of plate/walls yields acceptable tungsten density at the core boundary for simple transport model. Simulations of the heat flux on plasma facing components from exhausting core plasma are reported for two possible Fusion Nuclear Science Facility (FNSF) divertor configurations. One configuration utilizes divertor plates strongly inclined with respect to the poloidal magnetic flux surfaces like that planned for ITER and results in a partially detached divertor-plasma. The second configuration has divertor plates orthogonal to the flux surfaces, which leads to a fully detached divertor-plasma if the width of the divertor region is sufficient. Both configurations use scrape-off layer impurity seeding to yield an acceptable peak heat flux of ∼10MW/m2 or smaller on the divertor plates and chamber walls. The roles of recycled hydrogenic atoms and molecules are investigated and distribution of sputtering tungsten throughout the edge region modeled. The simulations are performed with the UEDGE 2D transport code to model both plasma and neutral components with supplementary neutral modeling performed with the DEGAS 2 Monte Carlo code.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2017.07.024</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Computer simulation ; Configurations ; Divertor plasma ; Exhausting ; FNSF ; Fusion ; Heat flux ; Heat transfer ; Magnetic fields ; Magnetic flux ; Nuclear fusion ; Nuclear power plants ; Plasma physics ; Plates ; Simulation ; Tungsten ; Two dimensional models ; Walls</subject><ispartof>Fusion engineering and design, 2018-10, Vol.135 (PB), p.380-393</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Oct 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-86d13820cd2b2d73ccc9bf41824db3f1236da96d976d1e9e813340529104872c3</citedby><cites>FETCH-LOGICAL-c419t-86d13820cd2b2d73ccc9bf41824db3f1236da96d976d1e9e813340529104872c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fusengdes.2017.07.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1476857$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rognlien, T.D.</creatorcontrib><creatorcontrib>Rensink, M.E.</creatorcontrib><creatorcontrib>Stotler, D.P.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Scrape-off layer plasma and neutral characteristics and their interactions with walls for FNSF</title><title>Fusion engineering and design</title><description>•Peak heat fluxes less than 10MW/m2 on divertor plates and walls are possible with strong neon seeding.•Steady-state partial/complete detached divertor plasma solutions found for tilted/flat divertor plates.•Sputtering of plate/walls yields acceptable tungsten density at the core boundary for simple transport model. Simulations of the heat flux on plasma facing components from exhausting core plasma are reported for two possible Fusion Nuclear Science Facility (FNSF) divertor configurations. One configuration utilizes divertor plates strongly inclined with respect to the poloidal magnetic flux surfaces like that planned for ITER and results in a partially detached divertor-plasma. The second configuration has divertor plates orthogonal to the flux surfaces, which leads to a fully detached divertor-plasma if the width of the divertor region is sufficient. Both configurations use scrape-off layer impurity seeding to yield an acceptable peak heat flux of ∼10MW/m2 or smaller on the divertor plates and chamber walls. The roles of recycled hydrogenic atoms and molecules are investigated and distribution of sputtering tungsten throughout the edge region modeled. The simulations are performed with the UEDGE 2D transport code to model both plasma and neutral components with supplementary neutral modeling performed with the DEGAS 2 Monte Carlo code.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Computer simulation</subject><subject>Configurations</subject><subject>Divertor plasma</subject><subject>Exhausting</subject><subject>FNSF</subject><subject>Fusion</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Nuclear fusion</subject><subject>Nuclear power plants</subject><subject>Plasma physics</subject><subject>Plates</subject><subject>Simulation</subject><subject>Tungsten</subject><subject>Two dimensional models</subject><subject>Walls</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKufwaDnrfmz3WyOUqwKRQ_q1ZAmszZlTWqSKv32Zq14FR4MzPxm8vIQOqdkQgltrtaTbpvAv1lIE0aomJAiVh-gEW0FrwSVzSEaEclIxYVsjtFJSmtSwKIRen0yUW-gCl2He72DiDe9Tu8aa2-xh22OusdmpaM2GaJL2Zn0M8srcBE7X7pl5IJP-MvlFf7SfZ9wFyKePzzNT9FRp_sEZ791jF7mN8-zu2rxeHs_u15UpqYyV21jKW8ZMZYtmRXcGCOXXU1bVtsl7yjjjdWysVIUECS0lPOaTJmkpG4FM3yMLvZ3Q3GoknEZzMoE78FkRWvRtFNRoMs9tInhYwspq3XYRl98KVaeEGRKmrpQYk-ZGFKK0KlNdO867hQlakhcrdVf4mpIXJEiNmxe7zeh_PTTQRyMgDdgXRx82OD-vfENPRuNkg</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Rognlien, T.D.</creator><creator>Rensink, M.E.</creator><creator>Stotler, D.P.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20181001</creationdate><title>Scrape-off layer plasma and neutral characteristics and their interactions with walls for FNSF</title><author>Rognlien, T.D. ; Rensink, M.E. ; Stotler, D.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-86d13820cd2b2d73ccc9bf41824db3f1236da96d976d1e9e813340529104872c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Computer simulation</topic><topic>Configurations</topic><topic>Divertor plasma</topic><topic>Exhausting</topic><topic>FNSF</topic><topic>Fusion</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Nuclear fusion</topic><topic>Nuclear power plants</topic><topic>Plasma physics</topic><topic>Plates</topic><topic>Simulation</topic><topic>Tungsten</topic><topic>Two dimensional models</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rognlien, T.D.</creatorcontrib><creatorcontrib>Rensink, M.E.</creatorcontrib><creatorcontrib>Stotler, D.P.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rognlien, T.D.</au><au>Rensink, M.E.</au><au>Stotler, D.P.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scrape-off layer plasma and neutral characteristics and their interactions with walls for FNSF</atitle><jtitle>Fusion engineering and design</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>135</volume><issue>PB</issue><spage>380</spage><epage>393</epage><pages>380-393</pages><issn>0920-3796</issn><eissn>1873-7196</eissn><abstract>•Peak heat fluxes less than 10MW/m2 on divertor plates and walls are possible with strong neon seeding.•Steady-state partial/complete detached divertor plasma solutions found for tilted/flat divertor plates.•Sputtering of plate/walls yields acceptable tungsten density at the core boundary for simple transport model. Simulations of the heat flux on plasma facing components from exhausting core plasma are reported for two possible Fusion Nuclear Science Facility (FNSF) divertor configurations. One configuration utilizes divertor plates strongly inclined with respect to the poloidal magnetic flux surfaces like that planned for ITER and results in a partially detached divertor-plasma. The second configuration has divertor plates orthogonal to the flux surfaces, which leads to a fully detached divertor-plasma if the width of the divertor region is sufficient. Both configurations use scrape-off layer impurity seeding to yield an acceptable peak heat flux of ∼10MW/m2 or smaller on the divertor plates and chamber walls. The roles of recycled hydrogenic atoms and molecules are investigated and distribution of sputtering tungsten throughout the edge region modeled. The simulations are performed with the UEDGE 2D transport code to model both plasma and neutral components with supplementary neutral modeling performed with the DEGAS 2 Monte Carlo code.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2017.07.024</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0920-3796
ispartof Fusion engineering and design, 2018-10, Vol.135 (PB), p.380-393
issn 0920-3796
1873-7196
language eng
recordid cdi_osti_scitechconnect_1476857
source Access via ScienceDirect (Elsevier)
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Computer simulation
Configurations
Divertor plasma
Exhausting
FNSF
Fusion
Heat flux
Heat transfer
Magnetic fields
Magnetic flux
Nuclear fusion
Nuclear power plants
Plasma physics
Plates
Simulation
Tungsten
Two dimensional models
Walls
title Scrape-off layer plasma and neutral characteristics and their interactions with walls for FNSF
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scrape-off%20layer%20plasma%20and%20neutral%20characteristics%20and%20their%20interactions%20with%20walls%20for%20FNSF&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Rognlien,%20T.D.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2018-10-01&rft.volume=135&rft.issue=PB&rft.spage=380&rft.epage=393&rft.pages=380-393&rft.issn=0920-3796&rft.eissn=1873-7196&rft_id=info:doi/10.1016/j.fusengdes.2017.07.024&rft_dat=%3Cproquest_osti_%3E2123705064%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123705064&rft_id=info:pmid/&rft_els_id=S0920379617307652&rfr_iscdi=true