Scrape-off layer plasma and neutral characteristics and their interactions with walls for FNSF
•Peak heat fluxes less than 10MW/m2 on divertor plates and walls are possible with strong neon seeding.•Steady-state partial/complete detached divertor plasma solutions found for tilted/flat divertor plates.•Sputtering of plate/walls yields acceptable tungsten density at the core boundary for simple...
Gespeichert in:
Veröffentlicht in: | Fusion engineering and design 2018-10, Vol.135 (PB), p.380-393 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 393 |
---|---|
container_issue | PB |
container_start_page | 380 |
container_title | Fusion engineering and design |
container_volume | 135 |
creator | Rognlien, T.D. Rensink, M.E. Stotler, D.P. |
description | •Peak heat fluxes less than 10MW/m2 on divertor plates and walls are possible with strong neon seeding.•Steady-state partial/complete detached divertor plasma solutions found for tilted/flat divertor plates.•Sputtering of plate/walls yields acceptable tungsten density at the core boundary for simple transport model.
Simulations of the heat flux on plasma facing components from exhausting core plasma are reported for two possible Fusion Nuclear Science Facility (FNSF) divertor configurations. One configuration utilizes divertor plates strongly inclined with respect to the poloidal magnetic flux surfaces like that planned for ITER and results in a partially detached divertor-plasma. The second configuration has divertor plates orthogonal to the flux surfaces, which leads to a fully detached divertor-plasma if the width of the divertor region is sufficient. Both configurations use scrape-off layer impurity seeding to yield an acceptable peak heat flux of ∼10MW/m2 or smaller on the divertor plates and chamber walls. The roles of recycled hydrogenic atoms and molecules are investigated and distribution of sputtering tungsten throughout the edge region modeled. The simulations are performed with the UEDGE 2D transport code to model both plasma and neutral components with supplementary neutral modeling performed with the DEGAS 2 Monte Carlo code. |
doi_str_mv | 10.1016/j.fusengdes.2017.07.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1476857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379617307652</els_id><sourcerecordid>2123705064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-86d13820cd2b2d73ccc9bf41824db3f1236da96d976d1e9e813340529104872c3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKufwaDnrfmz3WyOUqwKRQ_q1ZAmszZlTWqSKv32Zq14FR4MzPxm8vIQOqdkQgltrtaTbpvAv1lIE0aomJAiVh-gEW0FrwSVzSEaEclIxYVsjtFJSmtSwKIRen0yUW-gCl2He72DiDe9Tu8aa2-xh22OusdmpaM2GaJL2Zn0M8srcBE7X7pl5IJP-MvlFf7SfZ9wFyKePzzNT9FRp_sEZ791jF7mN8-zu2rxeHs_u15UpqYyV21jKW8ZMZYtmRXcGCOXXU1bVtsl7yjjjdWysVIUECS0lPOaTJmkpG4FM3yMLvZ3Q3GoknEZzMoE78FkRWvRtFNRoMs9tInhYwspq3XYRl98KVaeEGRKmrpQYk-ZGFKK0KlNdO867hQlakhcrdVf4mpIXJEiNmxe7zeh_PTTQRyMgDdgXRx82OD-vfENPRuNkg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123705064</pqid></control><display><type>article</type><title>Scrape-off layer plasma and neutral characteristics and their interactions with walls for FNSF</title><source>Access via ScienceDirect (Elsevier)</source><creator>Rognlien, T.D. ; Rensink, M.E. ; Stotler, D.P.</creator><creatorcontrib>Rognlien, T.D. ; Rensink, M.E. ; Stotler, D.P. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>•Peak heat fluxes less than 10MW/m2 on divertor plates and walls are possible with strong neon seeding.•Steady-state partial/complete detached divertor plasma solutions found for tilted/flat divertor plates.•Sputtering of plate/walls yields acceptable tungsten density at the core boundary for simple transport model.
Simulations of the heat flux on plasma facing components from exhausting core plasma are reported for two possible Fusion Nuclear Science Facility (FNSF) divertor configurations. One configuration utilizes divertor plates strongly inclined with respect to the poloidal magnetic flux surfaces like that planned for ITER and results in a partially detached divertor-plasma. The second configuration has divertor plates orthogonal to the flux surfaces, which leads to a fully detached divertor-plasma if the width of the divertor region is sufficient. Both configurations use scrape-off layer impurity seeding to yield an acceptable peak heat flux of ∼10MW/m2 or smaller on the divertor plates and chamber walls. The roles of recycled hydrogenic atoms and molecules are investigated and distribution of sputtering tungsten throughout the edge region modeled. The simulations are performed with the UEDGE 2D transport code to model both plasma and neutral components with supplementary neutral modeling performed with the DEGAS 2 Monte Carlo code.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2017.07.024</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Computer simulation ; Configurations ; Divertor plasma ; Exhausting ; FNSF ; Fusion ; Heat flux ; Heat transfer ; Magnetic fields ; Magnetic flux ; Nuclear fusion ; Nuclear power plants ; Plasma physics ; Plates ; Simulation ; Tungsten ; Two dimensional models ; Walls</subject><ispartof>Fusion engineering and design, 2018-10, Vol.135 (PB), p.380-393</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Oct 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-86d13820cd2b2d73ccc9bf41824db3f1236da96d976d1e9e813340529104872c3</citedby><cites>FETCH-LOGICAL-c419t-86d13820cd2b2d73ccc9bf41824db3f1236da96d976d1e9e813340529104872c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fusengdes.2017.07.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1476857$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rognlien, T.D.</creatorcontrib><creatorcontrib>Rensink, M.E.</creatorcontrib><creatorcontrib>Stotler, D.P.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Scrape-off layer plasma and neutral characteristics and their interactions with walls for FNSF</title><title>Fusion engineering and design</title><description>•Peak heat fluxes less than 10MW/m2 on divertor plates and walls are possible with strong neon seeding.•Steady-state partial/complete detached divertor plasma solutions found for tilted/flat divertor plates.•Sputtering of plate/walls yields acceptable tungsten density at the core boundary for simple transport model.
Simulations of the heat flux on plasma facing components from exhausting core plasma are reported for two possible Fusion Nuclear Science Facility (FNSF) divertor configurations. One configuration utilizes divertor plates strongly inclined with respect to the poloidal magnetic flux surfaces like that planned for ITER and results in a partially detached divertor-plasma. The second configuration has divertor plates orthogonal to the flux surfaces, which leads to a fully detached divertor-plasma if the width of the divertor region is sufficient. Both configurations use scrape-off layer impurity seeding to yield an acceptable peak heat flux of ∼10MW/m2 or smaller on the divertor plates and chamber walls. The roles of recycled hydrogenic atoms and molecules are investigated and distribution of sputtering tungsten throughout the edge region modeled. The simulations are performed with the UEDGE 2D transport code to model both plasma and neutral components with supplementary neutral modeling performed with the DEGAS 2 Monte Carlo code.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Computer simulation</subject><subject>Configurations</subject><subject>Divertor plasma</subject><subject>Exhausting</subject><subject>FNSF</subject><subject>Fusion</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Nuclear fusion</subject><subject>Nuclear power plants</subject><subject>Plasma physics</subject><subject>Plates</subject><subject>Simulation</subject><subject>Tungsten</subject><subject>Two dimensional models</subject><subject>Walls</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKufwaDnrfmz3WyOUqwKRQ_q1ZAmszZlTWqSKv32Zq14FR4MzPxm8vIQOqdkQgltrtaTbpvAv1lIE0aomJAiVh-gEW0FrwSVzSEaEclIxYVsjtFJSmtSwKIRen0yUW-gCl2He72DiDe9Tu8aa2-xh22OusdmpaM2GaJL2Zn0M8srcBE7X7pl5IJP-MvlFf7SfZ9wFyKePzzNT9FRp_sEZ791jF7mN8-zu2rxeHs_u15UpqYyV21jKW8ZMZYtmRXcGCOXXU1bVtsl7yjjjdWysVIUECS0lPOaTJmkpG4FM3yMLvZ3Q3GoknEZzMoE78FkRWvRtFNRoMs9tInhYwspq3XYRl98KVaeEGRKmrpQYk-ZGFKK0KlNdO867hQlakhcrdVf4mpIXJEiNmxe7zeh_PTTQRyMgDdgXRx82OD-vfENPRuNkg</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Rognlien, T.D.</creator><creator>Rensink, M.E.</creator><creator>Stotler, D.P.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20181001</creationdate><title>Scrape-off layer plasma and neutral characteristics and their interactions with walls for FNSF</title><author>Rognlien, T.D. ; Rensink, M.E. ; Stotler, D.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-86d13820cd2b2d73ccc9bf41824db3f1236da96d976d1e9e813340529104872c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Computer simulation</topic><topic>Configurations</topic><topic>Divertor plasma</topic><topic>Exhausting</topic><topic>FNSF</topic><topic>Fusion</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Nuclear fusion</topic><topic>Nuclear power plants</topic><topic>Plasma physics</topic><topic>Plates</topic><topic>Simulation</topic><topic>Tungsten</topic><topic>Two dimensional models</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rognlien, T.D.</creatorcontrib><creatorcontrib>Rensink, M.E.</creatorcontrib><creatorcontrib>Stotler, D.P.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rognlien, T.D.</au><au>Rensink, M.E.</au><au>Stotler, D.P.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scrape-off layer plasma and neutral characteristics and their interactions with walls for FNSF</atitle><jtitle>Fusion engineering and design</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>135</volume><issue>PB</issue><spage>380</spage><epage>393</epage><pages>380-393</pages><issn>0920-3796</issn><eissn>1873-7196</eissn><abstract>•Peak heat fluxes less than 10MW/m2 on divertor plates and walls are possible with strong neon seeding.•Steady-state partial/complete detached divertor plasma solutions found for tilted/flat divertor plates.•Sputtering of plate/walls yields acceptable tungsten density at the core boundary for simple transport model.
Simulations of the heat flux on plasma facing components from exhausting core plasma are reported for two possible Fusion Nuclear Science Facility (FNSF) divertor configurations. One configuration utilizes divertor plates strongly inclined with respect to the poloidal magnetic flux surfaces like that planned for ITER and results in a partially detached divertor-plasma. The second configuration has divertor plates orthogonal to the flux surfaces, which leads to a fully detached divertor-plasma if the width of the divertor region is sufficient. Both configurations use scrape-off layer impurity seeding to yield an acceptable peak heat flux of ∼10MW/m2 or smaller on the divertor plates and chamber walls. The roles of recycled hydrogenic atoms and molecules are investigated and distribution of sputtering tungsten throughout the edge region modeled. The simulations are performed with the UEDGE 2D transport code to model both plasma and neutral components with supplementary neutral modeling performed with the DEGAS 2 Monte Carlo code.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2017.07.024</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-3796 |
ispartof | Fusion engineering and design, 2018-10, Vol.135 (PB), p.380-393 |
issn | 0920-3796 1873-7196 |
language | eng |
recordid | cdi_osti_scitechconnect_1476857 |
source | Access via ScienceDirect (Elsevier) |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Computer simulation Configurations Divertor plasma Exhausting FNSF Fusion Heat flux Heat transfer Magnetic fields Magnetic flux Nuclear fusion Nuclear power plants Plasma physics Plates Simulation Tungsten Two dimensional models Walls |
title | Scrape-off layer plasma and neutral characteristics and their interactions with walls for FNSF |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scrape-off%20layer%20plasma%20and%20neutral%20characteristics%20and%20their%20interactions%20with%20walls%20for%20FNSF&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Rognlien,%20T.D.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2018-10-01&rft.volume=135&rft.issue=PB&rft.spage=380&rft.epage=393&rft.pages=380-393&rft.issn=0920-3796&rft.eissn=1873-7196&rft_id=info:doi/10.1016/j.fusengdes.2017.07.024&rft_dat=%3Cproquest_osti_%3E2123705064%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123705064&rft_id=info:pmid/&rft_els_id=S0920379617307652&rfr_iscdi=true |