Snowmelt controls on concentration‐discharge relationships and the balance of oxidative and acid‐base weathering fluxes in an alpine catchment, East River, Colorado

Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high‐elevation shale‐dominated catchment in the Rocky Mountains, using concentrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2017-03, Vol.53 (3), p.2507-2523
Hauptverfasser: Winnick, Matthew J., Carroll, Rosemary W. H., Williams, Kenneth H., Maxwell, Reed M., Dong, Wenming, Maher, Kate
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2523
container_issue 3
container_start_page 2507
container_title Water resources research
container_volume 53
creator Winnick, Matthew J.
Carroll, Rosemary W. H.
Williams, Kenneth H.
Maxwell, Reed M.
Dong, Wenming
Maher, Kate
description Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high‐elevation shale‐dominated catchment in the Rocky Mountains, using concentration‐discharge (C‐Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C‐Q relationship with clockwise hysteresis, indicating mobilization and depletion of DOC in the upper soil horizons and emphasizing the importance of shallow flow paths during snowmelt. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both sulfuric acid derived from pyrite oxidation in the shale bedrock and carbonic acid derived from subsurface respiration. Sulfuric acid weathering dominates during base flow conditions when waters infiltrate below the inferred pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during snowmelt as a result of shallow flow paths. Differential C‐Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This reduction in alkalinity results in CO2 outgassing when waters equilibrate to surface conditions, and reduces the riverine export of carbon and alkalinity by roughly 33% annually. Future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering may substantially alter carbon cycling in the East River. Ultimately, we demonstrate that differential C‐Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales. Key Points C‐Q relationships for multiple stream solutes highlight couplings between hydrologic flow regime and biogeochemical reaction fronts Balance of carbonate weathering from carbonic acid (soil respiration) versus sulfuric acid (pyrite oxidation) shaped by subsurface flow paths Data advance a conceptual model for transport and transformation of carbon and alkalinity from the watershed
doi_str_mv 10.1002/2016WR019724
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1476464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897382794</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4190-907340fa3274bdc140f206accb6a86c012a4d0569d7acb59e8562880523d75e83</originalsourceid><addsrcrecordid>eNp9kU1uFDEQhVsIJIbAjgNYsGGRDv5ru71Eo_AjRUIaQFla1bYn7chjD7Ynk-xyBI7BuTgJngwLxIKVy-WvXsnvdd1Lgs8IxvQtxURcrjBRkvJH3YIoznupJHvcLTDmrCdMyafds1KuMSZ8EHLR_fwS037jQkUmxZpTKCjFQ21cu0L1Kf66_2F9MTPkK4eyCw_NMvttQRAtqrNDEwRoEyitUbr1thE37uERjLdtfoLi0N5BY7OPV2gddreuIB8bhCBsfXTIQDXzpm09RedQKlo1jXyKlimkDDY9756sIRT34s950n17f_51-bG_-Pzh0_LdRQ-cKNwrLBnHa2BU8ska0mqKBRgzCRiFwYQCt3gQykow06DcOAg6jnigzMrBjeyke3XUTaV6XYyvzszNj-hM1YRLwQVv0JsjtM3p-86VqjfNIReaCy7tiiZjc32kUh3Q1_-g12mXY_uCJqoFQodBif9SoyJCMsVwo9iR2vvg7vQ2-w3kO02wPsSv_45fX66WK0oHjtlvrnym8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891673930</pqid></control><display><type>article</type><title>Snowmelt controls on concentration‐discharge relationships and the balance of oxidative and acid‐base weathering fluxes in an alpine catchment, East River, Colorado</title><source>Wiley Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Winnick, Matthew J. ; Carroll, Rosemary W. H. ; Williams, Kenneth H. ; Maxwell, Reed M. ; Dong, Wenming ; Maher, Kate</creator><creatorcontrib>Winnick, Matthew J. ; Carroll, Rosemary W. H. ; Williams, Kenneth H. ; Maxwell, Reed M. ; Dong, Wenming ; Maher, Kate ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) ; Stanford Univ., CA (United States)</creatorcontrib><description>Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high‐elevation shale‐dominated catchment in the Rocky Mountains, using concentration‐discharge (C‐Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C‐Q relationship with clockwise hysteresis, indicating mobilization and depletion of DOC in the upper soil horizons and emphasizing the importance of shallow flow paths during snowmelt. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both sulfuric acid derived from pyrite oxidation in the shale bedrock and carbonic acid derived from subsurface respiration. Sulfuric acid weathering dominates during base flow conditions when waters infiltrate below the inferred pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during snowmelt as a result of shallow flow paths. Differential C‐Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This reduction in alkalinity results in CO2 outgassing when waters equilibrate to surface conditions, and reduces the riverine export of carbon and alkalinity by roughly 33% annually. Future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering may substantially alter carbon cycling in the East River. Ultimately, we demonstrate that differential C‐Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales. Key Points C‐Q relationships for multiple stream solutes highlight couplings between hydrologic flow regime and biogeochemical reaction fronts Balance of carbonate weathering from carbonic acid (soil respiration) versus sulfuric acid (pyrite oxidation) shaped by subsurface flow paths Data advance a conceptual model for transport and transformation of carbon and alkalinity from the watershed</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2016WR019724</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Alkalinity ; Anions ; Balances (scales) ; Balancing ; Base flow ; Bedrock ; Biogeochemistry ; Calcite ; Carbon ; Carbon cycle ; Carbon dioxide ; Carbon monoxide ; Carbonates ; Carbonic acid ; Catchment area ; Catchment scale ; Catchments ; Cations ; concentration-discharge ; Connectors ; Couplings ; critical zone ; Depletion ; Discharge ; Dissolved organic carbon ; Dynamics ; ENVIRONMENTAL SCIENCES ; Fluxes ; GEOSCIENCES ; Hydrology ; Hysteresis ; Mineral nutrients ; Mountains ; Outgassing ; Oxidation ; Pyrite ; pyrite oxidation ; Respiration ; Rivers ; Saturation ; Sedimentary rocks ; Shale ; Shales ; Snowmelt ; Soil ; Soil horizons ; Solutes ; Subsurface flow ; Sulfuric acid ; water quality ; watersheds ; Weathering</subject><ispartof>Water resources research, 2017-03, Vol.53 (3), p.2507-2523</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4190-907340fa3274bdc140f206accb6a86c012a4d0569d7acb59e8562880523d75e83</citedby><orcidid>0000-0003-2074-8887 ; 0000000320748887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016WR019724$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016WR019724$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,11514,27924,27925,45574,45575,46468,46892</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1476464$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Winnick, Matthew J.</creatorcontrib><creatorcontrib>Carroll, Rosemary W. H.</creatorcontrib><creatorcontrib>Williams, Kenneth H.</creatorcontrib><creatorcontrib>Maxwell, Reed M.</creatorcontrib><creatorcontrib>Dong, Wenming</creatorcontrib><creatorcontrib>Maher, Kate</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><title>Snowmelt controls on concentration‐discharge relationships and the balance of oxidative and acid‐base weathering fluxes in an alpine catchment, East River, Colorado</title><title>Water resources research</title><description>Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high‐elevation shale‐dominated catchment in the Rocky Mountains, using concentration‐discharge (C‐Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C‐Q relationship with clockwise hysteresis, indicating mobilization and depletion of DOC in the upper soil horizons and emphasizing the importance of shallow flow paths during snowmelt. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both sulfuric acid derived from pyrite oxidation in the shale bedrock and carbonic acid derived from subsurface respiration. Sulfuric acid weathering dominates during base flow conditions when waters infiltrate below the inferred pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during snowmelt as a result of shallow flow paths. Differential C‐Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This reduction in alkalinity results in CO2 outgassing when waters equilibrate to surface conditions, and reduces the riverine export of carbon and alkalinity by roughly 33% annually. Future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering may substantially alter carbon cycling in the East River. Ultimately, we demonstrate that differential C‐Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales. Key Points C‐Q relationships for multiple stream solutes highlight couplings between hydrologic flow regime and biogeochemical reaction fronts Balance of carbonate weathering from carbonic acid (soil respiration) versus sulfuric acid (pyrite oxidation) shaped by subsurface flow paths Data advance a conceptual model for transport and transformation of carbon and alkalinity from the watershed</description><subject>Alkalinity</subject><subject>Anions</subject><subject>Balances (scales)</subject><subject>Balancing</subject><subject>Base flow</subject><subject>Bedrock</subject><subject>Biogeochemistry</subject><subject>Calcite</subject><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Carbonates</subject><subject>Carbonic acid</subject><subject>Catchment area</subject><subject>Catchment scale</subject><subject>Catchments</subject><subject>Cations</subject><subject>concentration-discharge</subject><subject>Connectors</subject><subject>Couplings</subject><subject>critical zone</subject><subject>Depletion</subject><subject>Discharge</subject><subject>Dissolved organic carbon</subject><subject>Dynamics</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Fluxes</subject><subject>GEOSCIENCES</subject><subject>Hydrology</subject><subject>Hysteresis</subject><subject>Mineral nutrients</subject><subject>Mountains</subject><subject>Outgassing</subject><subject>Oxidation</subject><subject>Pyrite</subject><subject>pyrite oxidation</subject><subject>Respiration</subject><subject>Rivers</subject><subject>Saturation</subject><subject>Sedimentary rocks</subject><subject>Shale</subject><subject>Shales</subject><subject>Snowmelt</subject><subject>Soil</subject><subject>Soil horizons</subject><subject>Solutes</subject><subject>Subsurface flow</subject><subject>Sulfuric acid</subject><subject>water quality</subject><subject>watersheds</subject><subject>Weathering</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kU1uFDEQhVsIJIbAjgNYsGGRDv5ru71Eo_AjRUIaQFla1bYn7chjD7Ynk-xyBI7BuTgJngwLxIKVy-WvXsnvdd1Lgs8IxvQtxURcrjBRkvJH3YIoznupJHvcLTDmrCdMyafds1KuMSZ8EHLR_fwS037jQkUmxZpTKCjFQ21cu0L1Kf66_2F9MTPkK4eyCw_NMvttQRAtqrNDEwRoEyitUbr1thE37uERjLdtfoLi0N5BY7OPV2gddreuIB8bhCBsfXTIQDXzpm09RedQKlo1jXyKlimkDDY9756sIRT34s950n17f_51-bG_-Pzh0_LdRQ-cKNwrLBnHa2BU8ska0mqKBRgzCRiFwYQCt3gQykow06DcOAg6jnigzMrBjeyke3XUTaV6XYyvzszNj-hM1YRLwQVv0JsjtM3p-86VqjfNIReaCy7tiiZjc32kUh3Q1_-g12mXY_uCJqoFQodBif9SoyJCMsVwo9iR2vvg7vQ2-w3kO02wPsSv_45fX66WK0oHjtlvrnym8w</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Winnick, Matthew J.</creator><creator>Carroll, Rosemary W. H.</creator><creator>Williams, Kenneth H.</creator><creator>Maxwell, Reed M.</creator><creator>Dong, Wenming</creator><creator>Maher, Kate</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union (AGU)</general><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2074-8887</orcidid><orcidid>https://orcid.org/0000000320748887</orcidid></search><sort><creationdate>201703</creationdate><title>Snowmelt controls on concentration‐discharge relationships and the balance of oxidative and acid‐base weathering fluxes in an alpine catchment, East River, Colorado</title><author>Winnick, Matthew J. ; Carroll, Rosemary W. H. ; Williams, Kenneth H. ; Maxwell, Reed M. ; Dong, Wenming ; Maher, Kate</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4190-907340fa3274bdc140f206accb6a86c012a4d0569d7acb59e8562880523d75e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alkalinity</topic><topic>Anions</topic><topic>Balances (scales)</topic><topic>Balancing</topic><topic>Base flow</topic><topic>Bedrock</topic><topic>Biogeochemistry</topic><topic>Calcite</topic><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Carbonates</topic><topic>Carbonic acid</topic><topic>Catchment area</topic><topic>Catchment scale</topic><topic>Catchments</topic><topic>Cations</topic><topic>concentration-discharge</topic><topic>Connectors</topic><topic>Couplings</topic><topic>critical zone</topic><topic>Depletion</topic><topic>Discharge</topic><topic>Dissolved organic carbon</topic><topic>Dynamics</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Fluxes</topic><topic>GEOSCIENCES</topic><topic>Hydrology</topic><topic>Hysteresis</topic><topic>Mineral nutrients</topic><topic>Mountains</topic><topic>Outgassing</topic><topic>Oxidation</topic><topic>Pyrite</topic><topic>pyrite oxidation</topic><topic>Respiration</topic><topic>Rivers</topic><topic>Saturation</topic><topic>Sedimentary rocks</topic><topic>Shale</topic><topic>Shales</topic><topic>Snowmelt</topic><topic>Soil</topic><topic>Soil horizons</topic><topic>Solutes</topic><topic>Subsurface flow</topic><topic>Sulfuric acid</topic><topic>water quality</topic><topic>watersheds</topic><topic>Weathering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winnick, Matthew J.</creatorcontrib><creatorcontrib>Carroll, Rosemary W. H.</creatorcontrib><creatorcontrib>Williams, Kenneth H.</creatorcontrib><creatorcontrib>Maxwell, Reed M.</creatorcontrib><creatorcontrib>Dong, Wenming</creatorcontrib><creatorcontrib>Maher, Kate</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winnick, Matthew J.</au><au>Carroll, Rosemary W. H.</au><au>Williams, Kenneth H.</au><au>Maxwell, Reed M.</au><au>Dong, Wenming</au><au>Maher, Kate</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Stanford Univ., CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Snowmelt controls on concentration‐discharge relationships and the balance of oxidative and acid‐base weathering fluxes in an alpine catchment, East River, Colorado</atitle><jtitle>Water resources research</jtitle><date>2017-03</date><risdate>2017</risdate><volume>53</volume><issue>3</issue><spage>2507</spage><epage>2523</epage><pages>2507-2523</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high‐elevation shale‐dominated catchment in the Rocky Mountains, using concentration‐discharge (C‐Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C‐Q relationship with clockwise hysteresis, indicating mobilization and depletion of DOC in the upper soil horizons and emphasizing the importance of shallow flow paths during snowmelt. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both sulfuric acid derived from pyrite oxidation in the shale bedrock and carbonic acid derived from subsurface respiration. Sulfuric acid weathering dominates during base flow conditions when waters infiltrate below the inferred pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during snowmelt as a result of shallow flow paths. Differential C‐Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This reduction in alkalinity results in CO2 outgassing when waters equilibrate to surface conditions, and reduces the riverine export of carbon and alkalinity by roughly 33% annually. Future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering may substantially alter carbon cycling in the East River. Ultimately, we demonstrate that differential C‐Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales. Key Points C‐Q relationships for multiple stream solutes highlight couplings between hydrologic flow regime and biogeochemical reaction fronts Balance of carbonate weathering from carbonic acid (soil respiration) versus sulfuric acid (pyrite oxidation) shaped by subsurface flow paths Data advance a conceptual model for transport and transformation of carbon and alkalinity from the watershed</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2016WR019724</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2074-8887</orcidid><orcidid>https://orcid.org/0000000320748887</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2017-03, Vol.53 (3), p.2507-2523
issn 0043-1397
1944-7973
language eng
recordid cdi_osti_scitechconnect_1476464
source Wiley Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell AGU Digital Library
subjects Alkalinity
Anions
Balances (scales)
Balancing
Base flow
Bedrock
Biogeochemistry
Calcite
Carbon
Carbon cycle
Carbon dioxide
Carbon monoxide
Carbonates
Carbonic acid
Catchment area
Catchment scale
Catchments
Cations
concentration-discharge
Connectors
Couplings
critical zone
Depletion
Discharge
Dissolved organic carbon
Dynamics
ENVIRONMENTAL SCIENCES
Fluxes
GEOSCIENCES
Hydrology
Hysteresis
Mineral nutrients
Mountains
Outgassing
Oxidation
Pyrite
pyrite oxidation
Respiration
Rivers
Saturation
Sedimentary rocks
Shale
Shales
Snowmelt
Soil
Soil horizons
Solutes
Subsurface flow
Sulfuric acid
water quality
watersheds
Weathering
title Snowmelt controls on concentration‐discharge relationships and the balance of oxidative and acid‐base weathering fluxes in an alpine catchment, East River, Colorado
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A43%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Snowmelt%20controls%20on%20concentration%E2%80%90discharge%20relationships%20and%20the%20balance%20of%20oxidative%20and%20acid%E2%80%90base%20weathering%20fluxes%20in%20an%20alpine%20catchment,%20East%20River,%20Colorado&rft.jtitle=Water%20resources%20research&rft.au=Winnick,%20Matthew%20J.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2017-03&rft.volume=53&rft.issue=3&rft.spage=2507&rft.epage=2523&rft.pages=2507-2523&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2016WR019724&rft_dat=%3Cproquest_osti_%3E1897382794%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891673930&rft_id=info:pmid/&rfr_iscdi=true