Snowmelt controls on concentration‐discharge relationships and the balance of oxidative and acid‐base weathering fluxes in an alpine catchment, East River, Colorado
Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high‐elevation shale‐dominated catchment in the Rocky Mountains, using concentrat...
Gespeichert in:
Veröffentlicht in: | Water resources research 2017-03, Vol.53 (3), p.2507-2523 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2523 |
---|---|
container_issue | 3 |
container_start_page | 2507 |
container_title | Water resources research |
container_volume | 53 |
creator | Winnick, Matthew J. Carroll, Rosemary W. H. Williams, Kenneth H. Maxwell, Reed M. Dong, Wenming Maher, Kate |
description | Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high‐elevation shale‐dominated catchment in the Rocky Mountains, using concentration‐discharge (C‐Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C‐Q relationship with clockwise hysteresis, indicating mobilization and depletion of DOC in the upper soil horizons and emphasizing the importance of shallow flow paths during snowmelt. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both sulfuric acid derived from pyrite oxidation in the shale bedrock and carbonic acid derived from subsurface respiration. Sulfuric acid weathering dominates during base flow conditions when waters infiltrate below the inferred pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during snowmelt as a result of shallow flow paths. Differential C‐Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This reduction in alkalinity results in CO2 outgassing when waters equilibrate to surface conditions, and reduces the riverine export of carbon and alkalinity by roughly 33% annually. Future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering may substantially alter carbon cycling in the East River. Ultimately, we demonstrate that differential C‐Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.
Key Points
C‐Q relationships for multiple stream solutes highlight couplings between hydrologic flow regime and biogeochemical reaction fronts
Balance of carbonate weathering from carbonic acid (soil respiration) versus sulfuric acid (pyrite oxidation) shaped by subsurface flow paths
Data advance a conceptual model for transport and transformation of carbon and alkalinity from the watershed |
doi_str_mv | 10.1002/2016WR019724 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1476464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897382794</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4190-907340fa3274bdc140f206accb6a86c012a4d0569d7acb59e8562880523d75e83</originalsourceid><addsrcrecordid>eNp9kU1uFDEQhVsIJIbAjgNYsGGRDv5ru71Eo_AjRUIaQFla1bYn7chjD7Ynk-xyBI7BuTgJngwLxIKVy-WvXsnvdd1Lgs8IxvQtxURcrjBRkvJH3YIoznupJHvcLTDmrCdMyafds1KuMSZ8EHLR_fwS037jQkUmxZpTKCjFQ21cu0L1Kf66_2F9MTPkK4eyCw_NMvttQRAtqrNDEwRoEyitUbr1thE37uERjLdtfoLi0N5BY7OPV2gddreuIB8bhCBsfXTIQDXzpm09RedQKlo1jXyKlimkDDY9756sIRT34s950n17f_51-bG_-Pzh0_LdRQ-cKNwrLBnHa2BU8ska0mqKBRgzCRiFwYQCt3gQykow06DcOAg6jnigzMrBjeyke3XUTaV6XYyvzszNj-hM1YRLwQVv0JsjtM3p-86VqjfNIReaCy7tiiZjc32kUh3Q1_-g12mXY_uCJqoFQodBif9SoyJCMsVwo9iR2vvg7vQ2-w3kO02wPsSv_45fX66WK0oHjtlvrnym8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891673930</pqid></control><display><type>article</type><title>Snowmelt controls on concentration‐discharge relationships and the balance of oxidative and acid‐base weathering fluxes in an alpine catchment, East River, Colorado</title><source>Wiley Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Winnick, Matthew J. ; Carroll, Rosemary W. H. ; Williams, Kenneth H. ; Maxwell, Reed M. ; Dong, Wenming ; Maher, Kate</creator><creatorcontrib>Winnick, Matthew J. ; Carroll, Rosemary W. H. ; Williams, Kenneth H. ; Maxwell, Reed M. ; Dong, Wenming ; Maher, Kate ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) ; Stanford Univ., CA (United States)</creatorcontrib><description>Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high‐elevation shale‐dominated catchment in the Rocky Mountains, using concentration‐discharge (C‐Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C‐Q relationship with clockwise hysteresis, indicating mobilization and depletion of DOC in the upper soil horizons and emphasizing the importance of shallow flow paths during snowmelt. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both sulfuric acid derived from pyrite oxidation in the shale bedrock and carbonic acid derived from subsurface respiration. Sulfuric acid weathering dominates during base flow conditions when waters infiltrate below the inferred pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during snowmelt as a result of shallow flow paths. Differential C‐Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This reduction in alkalinity results in CO2 outgassing when waters equilibrate to surface conditions, and reduces the riverine export of carbon and alkalinity by roughly 33% annually. Future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering may substantially alter carbon cycling in the East River. Ultimately, we demonstrate that differential C‐Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.
Key Points
C‐Q relationships for multiple stream solutes highlight couplings between hydrologic flow regime and biogeochemical reaction fronts
Balance of carbonate weathering from carbonic acid (soil respiration) versus sulfuric acid (pyrite oxidation) shaped by subsurface flow paths
Data advance a conceptual model for transport and transformation of carbon and alkalinity from the watershed</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2016WR019724</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Alkalinity ; Anions ; Balances (scales) ; Balancing ; Base flow ; Bedrock ; Biogeochemistry ; Calcite ; Carbon ; Carbon cycle ; Carbon dioxide ; Carbon monoxide ; Carbonates ; Carbonic acid ; Catchment area ; Catchment scale ; Catchments ; Cations ; concentration-discharge ; Connectors ; Couplings ; critical zone ; Depletion ; Discharge ; Dissolved organic carbon ; Dynamics ; ENVIRONMENTAL SCIENCES ; Fluxes ; GEOSCIENCES ; Hydrology ; Hysteresis ; Mineral nutrients ; Mountains ; Outgassing ; Oxidation ; Pyrite ; pyrite oxidation ; Respiration ; Rivers ; Saturation ; Sedimentary rocks ; Shale ; Shales ; Snowmelt ; Soil ; Soil horizons ; Solutes ; Subsurface flow ; Sulfuric acid ; water quality ; watersheds ; Weathering</subject><ispartof>Water resources research, 2017-03, Vol.53 (3), p.2507-2523</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4190-907340fa3274bdc140f206accb6a86c012a4d0569d7acb59e8562880523d75e83</citedby><orcidid>0000-0003-2074-8887 ; 0000000320748887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016WR019724$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016WR019724$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,11514,27924,27925,45574,45575,46468,46892</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1476464$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Winnick, Matthew J.</creatorcontrib><creatorcontrib>Carroll, Rosemary W. H.</creatorcontrib><creatorcontrib>Williams, Kenneth H.</creatorcontrib><creatorcontrib>Maxwell, Reed M.</creatorcontrib><creatorcontrib>Dong, Wenming</creatorcontrib><creatorcontrib>Maher, Kate</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><title>Snowmelt controls on concentration‐discharge relationships and the balance of oxidative and acid‐base weathering fluxes in an alpine catchment, East River, Colorado</title><title>Water resources research</title><description>Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high‐elevation shale‐dominated catchment in the Rocky Mountains, using concentration‐discharge (C‐Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C‐Q relationship with clockwise hysteresis, indicating mobilization and depletion of DOC in the upper soil horizons and emphasizing the importance of shallow flow paths during snowmelt. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both sulfuric acid derived from pyrite oxidation in the shale bedrock and carbonic acid derived from subsurface respiration. Sulfuric acid weathering dominates during base flow conditions when waters infiltrate below the inferred pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during snowmelt as a result of shallow flow paths. Differential C‐Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This reduction in alkalinity results in CO2 outgassing when waters equilibrate to surface conditions, and reduces the riverine export of carbon and alkalinity by roughly 33% annually. Future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering may substantially alter carbon cycling in the East River. Ultimately, we demonstrate that differential C‐Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.
Key Points
C‐Q relationships for multiple stream solutes highlight couplings between hydrologic flow regime and biogeochemical reaction fronts
Balance of carbonate weathering from carbonic acid (soil respiration) versus sulfuric acid (pyrite oxidation) shaped by subsurface flow paths
Data advance a conceptual model for transport and transformation of carbon and alkalinity from the watershed</description><subject>Alkalinity</subject><subject>Anions</subject><subject>Balances (scales)</subject><subject>Balancing</subject><subject>Base flow</subject><subject>Bedrock</subject><subject>Biogeochemistry</subject><subject>Calcite</subject><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Carbonates</subject><subject>Carbonic acid</subject><subject>Catchment area</subject><subject>Catchment scale</subject><subject>Catchments</subject><subject>Cations</subject><subject>concentration-discharge</subject><subject>Connectors</subject><subject>Couplings</subject><subject>critical zone</subject><subject>Depletion</subject><subject>Discharge</subject><subject>Dissolved organic carbon</subject><subject>Dynamics</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Fluxes</subject><subject>GEOSCIENCES</subject><subject>Hydrology</subject><subject>Hysteresis</subject><subject>Mineral nutrients</subject><subject>Mountains</subject><subject>Outgassing</subject><subject>Oxidation</subject><subject>Pyrite</subject><subject>pyrite oxidation</subject><subject>Respiration</subject><subject>Rivers</subject><subject>Saturation</subject><subject>Sedimentary rocks</subject><subject>Shale</subject><subject>Shales</subject><subject>Snowmelt</subject><subject>Soil</subject><subject>Soil horizons</subject><subject>Solutes</subject><subject>Subsurface flow</subject><subject>Sulfuric acid</subject><subject>water quality</subject><subject>watersheds</subject><subject>Weathering</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kU1uFDEQhVsIJIbAjgNYsGGRDv5ru71Eo_AjRUIaQFla1bYn7chjD7Ynk-xyBI7BuTgJngwLxIKVy-WvXsnvdd1Lgs8IxvQtxURcrjBRkvJH3YIoznupJHvcLTDmrCdMyafds1KuMSZ8EHLR_fwS037jQkUmxZpTKCjFQ21cu0L1Kf66_2F9MTPkK4eyCw_NMvttQRAtqrNDEwRoEyitUbr1thE37uERjLdtfoLi0N5BY7OPV2gddreuIB8bhCBsfXTIQDXzpm09RedQKlo1jXyKlimkDDY9756sIRT34s950n17f_51-bG_-Pzh0_LdRQ-cKNwrLBnHa2BU8ska0mqKBRgzCRiFwYQCt3gQykow06DcOAg6jnigzMrBjeyke3XUTaV6XYyvzszNj-hM1YRLwQVv0JsjtM3p-86VqjfNIReaCy7tiiZjc32kUh3Q1_-g12mXY_uCJqoFQodBif9SoyJCMsVwo9iR2vvg7vQ2-w3kO02wPsSv_45fX66WK0oHjtlvrnym8w</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Winnick, Matthew J.</creator><creator>Carroll, Rosemary W. H.</creator><creator>Williams, Kenneth H.</creator><creator>Maxwell, Reed M.</creator><creator>Dong, Wenming</creator><creator>Maher, Kate</creator><general>John Wiley & Sons, Inc</general><general>American Geophysical Union (AGU)</general><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2074-8887</orcidid><orcidid>https://orcid.org/0000000320748887</orcidid></search><sort><creationdate>201703</creationdate><title>Snowmelt controls on concentration‐discharge relationships and the balance of oxidative and acid‐base weathering fluxes in an alpine catchment, East River, Colorado</title><author>Winnick, Matthew J. ; Carroll, Rosemary W. H. ; Williams, Kenneth H. ; Maxwell, Reed M. ; Dong, Wenming ; Maher, Kate</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4190-907340fa3274bdc140f206accb6a86c012a4d0569d7acb59e8562880523d75e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alkalinity</topic><topic>Anions</topic><topic>Balances (scales)</topic><topic>Balancing</topic><topic>Base flow</topic><topic>Bedrock</topic><topic>Biogeochemistry</topic><topic>Calcite</topic><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Carbonates</topic><topic>Carbonic acid</topic><topic>Catchment area</topic><topic>Catchment scale</topic><topic>Catchments</topic><topic>Cations</topic><topic>concentration-discharge</topic><topic>Connectors</topic><topic>Couplings</topic><topic>critical zone</topic><topic>Depletion</topic><topic>Discharge</topic><topic>Dissolved organic carbon</topic><topic>Dynamics</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Fluxes</topic><topic>GEOSCIENCES</topic><topic>Hydrology</topic><topic>Hysteresis</topic><topic>Mineral nutrients</topic><topic>Mountains</topic><topic>Outgassing</topic><topic>Oxidation</topic><topic>Pyrite</topic><topic>pyrite oxidation</topic><topic>Respiration</topic><topic>Rivers</topic><topic>Saturation</topic><topic>Sedimentary rocks</topic><topic>Shale</topic><topic>Shales</topic><topic>Snowmelt</topic><topic>Soil</topic><topic>Soil horizons</topic><topic>Solutes</topic><topic>Subsurface flow</topic><topic>Sulfuric acid</topic><topic>water quality</topic><topic>watersheds</topic><topic>Weathering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winnick, Matthew J.</creatorcontrib><creatorcontrib>Carroll, Rosemary W. H.</creatorcontrib><creatorcontrib>Williams, Kenneth H.</creatorcontrib><creatorcontrib>Maxwell, Reed M.</creatorcontrib><creatorcontrib>Dong, Wenming</creatorcontrib><creatorcontrib>Maher, Kate</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winnick, Matthew J.</au><au>Carroll, Rosemary W. H.</au><au>Williams, Kenneth H.</au><au>Maxwell, Reed M.</au><au>Dong, Wenming</au><au>Maher, Kate</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Stanford Univ., CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Snowmelt controls on concentration‐discharge relationships and the balance of oxidative and acid‐base weathering fluxes in an alpine catchment, East River, Colorado</atitle><jtitle>Water resources research</jtitle><date>2017-03</date><risdate>2017</risdate><volume>53</volume><issue>3</issue><spage>2507</spage><epage>2523</epage><pages>2507-2523</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high‐elevation shale‐dominated catchment in the Rocky Mountains, using concentration‐discharge (C‐Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C‐Q relationship with clockwise hysteresis, indicating mobilization and depletion of DOC in the upper soil horizons and emphasizing the importance of shallow flow paths during snowmelt. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both sulfuric acid derived from pyrite oxidation in the shale bedrock and carbonic acid derived from subsurface respiration. Sulfuric acid weathering dominates during base flow conditions when waters infiltrate below the inferred pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during snowmelt as a result of shallow flow paths. Differential C‐Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This reduction in alkalinity results in CO2 outgassing when waters equilibrate to surface conditions, and reduces the riverine export of carbon and alkalinity by roughly 33% annually. Future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering may substantially alter carbon cycling in the East River. Ultimately, we demonstrate that differential C‐Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.
Key Points
C‐Q relationships for multiple stream solutes highlight couplings between hydrologic flow regime and biogeochemical reaction fronts
Balance of carbonate weathering from carbonic acid (soil respiration) versus sulfuric acid (pyrite oxidation) shaped by subsurface flow paths
Data advance a conceptual model for transport and transformation of carbon and alkalinity from the watershed</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2016WR019724</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2074-8887</orcidid><orcidid>https://orcid.org/0000000320748887</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2017-03, Vol.53 (3), p.2507-2523 |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_osti_scitechconnect_1476464 |
source | Wiley Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell AGU Digital Library |
subjects | Alkalinity Anions Balances (scales) Balancing Base flow Bedrock Biogeochemistry Calcite Carbon Carbon cycle Carbon dioxide Carbon monoxide Carbonates Carbonic acid Catchment area Catchment scale Catchments Cations concentration-discharge Connectors Couplings critical zone Depletion Discharge Dissolved organic carbon Dynamics ENVIRONMENTAL SCIENCES Fluxes GEOSCIENCES Hydrology Hysteresis Mineral nutrients Mountains Outgassing Oxidation Pyrite pyrite oxidation Respiration Rivers Saturation Sedimentary rocks Shale Shales Snowmelt Soil Soil horizons Solutes Subsurface flow Sulfuric acid water quality watersheds Weathering |
title | Snowmelt controls on concentration‐discharge relationships and the balance of oxidative and acid‐base weathering fluxes in an alpine catchment, East River, Colorado |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A43%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Snowmelt%20controls%20on%20concentration%E2%80%90discharge%20relationships%20and%20the%20balance%20of%20oxidative%20and%20acid%E2%80%90base%20weathering%20fluxes%20in%20an%20alpine%20catchment,%20East%20River,%20Colorado&rft.jtitle=Water%20resources%20research&rft.au=Winnick,%20Matthew%20J.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2017-03&rft.volume=53&rft.issue=3&rft.spage=2507&rft.epage=2523&rft.pages=2507-2523&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2016WR019724&rft_dat=%3Cproquest_osti_%3E1897382794%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891673930&rft_id=info:pmid/&rfr_iscdi=true |