Target tracking via recursive Bayesian state estimation in cognitive radar networks
•A framework for single target tracking in cognitive networks of radars is proposed.•Waveform design, path planning, and radar selection are jointly considered.•Combinatorial optimization and recursive Bayesian estimation are used for tracking.•Proposed framework is illustrated with a numerical exam...
Gespeichert in:
Veröffentlicht in: | Signal processing 2019-02, Vol.155 (C), p.157-169 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 169 |
---|---|
container_issue | C |
container_start_page | 157 |
container_title | Signal processing |
container_volume | 155 |
creator | Xiang, Yijian Akcakaya, Murat Sen, Satyabrata Erdogmus, Deniz Nehorai, Arye |
description | •A framework for single target tracking in cognitive networks of radars is proposed.•Waveform design, path planning, and radar selection are jointly considered.•Combinatorial optimization and recursive Bayesian estimation are used for tracking.•Proposed framework is illustrated with a numerical example.
To cope with complicated environments and stealthier targets, incorporating intelligence and cognition cycles into target tracking is of great importance in modern sensor network management. With remarkable advances in sensor techniques and deployable platforms, a sensing system has freedom to select a subset of available radars, plan their trajectories, and transmit designed waveforms. In this paper, we propose a general framework for single target tracking in cognitive networks of radars, including consideration of waveform design, path planning, and radar selection, which are separately but not jointly taken into account in existing work. The tracking procedure, built on the theories of dynamic graphical models (DGM) and recursive Bayesian state estimation (RBSE), is formulated as two iterative steps: (i) solving a combinatorial optimization problem to select the optimal subset of radars, waveforms, and locations for the next tracking instant, and (ii) acquiring the recursive Bayesian state estimation to accurately track the target. Further, an illustrative example introduces a specific scenario in 2-D space. Simulation results based on the scenario demonstrate that the proposed framework can accurately track the target under the management of the network of radars. |
doi_str_mv | 10.1016/j.sigpro.2018.09.035 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1476417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168418303190</els_id><sourcerecordid>S0165168418303190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-6269ca6ead677c38c00964242e590ae48c25eb61db38ef16d467e29363474a723</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwDxgs9gS_YscLElS8pEoMlNlyndvgFuzKNkX8exKFmeku53y650PokpKaEiqvt3X2_T7FmhHa1kTXhDdHaEZbxSrVNOoYzYZYU1HZilN0lvOWEEK5JDP0urKph4JLsm7nQ48P3uIE7itlfwB8Z38gextwLrYAhlz8py0-BuwDdrEPvoyxZDubcIDyHdMun6OTjf3IcPF35-jt4X61eKqWL4_Pi9tl5bjSpZJMamcl2E4q5XjrCNFSMMGg0cSCaB1rYC1pt-YtbKjshFTANJdcKGEV43N0NXHj8JbJzhdw7y6GAK4YKpQUVA0hMYVcijkn2Jh9GjakH0OJGe2ZrZnsmdGeIdoM9obazVSDYcDBQxr5EBx0Po34Lvr_Ab_ypXsc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Target tracking via recursive Bayesian state estimation in cognitive radar networks</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Xiang, Yijian ; Akcakaya, Murat ; Sen, Satyabrata ; Erdogmus, Deniz ; Nehorai, Arye</creator><creatorcontrib>Xiang, Yijian ; Akcakaya, Murat ; Sen, Satyabrata ; Erdogmus, Deniz ; Nehorai, Arye ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>•A framework for single target tracking in cognitive networks of radars is proposed.•Waveform design, path planning, and radar selection are jointly considered.•Combinatorial optimization and recursive Bayesian estimation are used for tracking.•Proposed framework is illustrated with a numerical example.
To cope with complicated environments and stealthier targets, incorporating intelligence and cognition cycles into target tracking is of great importance in modern sensor network management. With remarkable advances in sensor techniques and deployable platforms, a sensing system has freedom to select a subset of available radars, plan their trajectories, and transmit designed waveforms. In this paper, we propose a general framework for single target tracking in cognitive networks of radars, including consideration of waveform design, path planning, and radar selection, which are separately but not jointly taken into account in existing work. The tracking procedure, built on the theories of dynamic graphical models (DGM) and recursive Bayesian state estimation (RBSE), is formulated as two iterative steps: (i) solving a combinatorial optimization problem to select the optimal subset of radars, waveforms, and locations for the next tracking instant, and (ii) acquiring the recursive Bayesian state estimation to accurately track the target. Further, an illustrative example introduces a specific scenario in 2-D space. Simulation results based on the scenario demonstrate that the proposed framework can accurately track the target under the management of the network of radars.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2018.09.035</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Network of radars ; OTHER INSTRUMENTATION ; Path planning ; Recursive Bayesian state estimation ; Sensor selection ; Target tracking ; Waveform design</subject><ispartof>Signal processing, 2019-02, Vol.155 (C), p.157-169</ispartof><rights>2018 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-6269ca6ead677c38c00964242e590ae48c25eb61db38ef16d467e29363474a723</citedby><cites>FETCH-LOGICAL-c379t-6269ca6ead677c38c00964242e590ae48c25eb61db38ef16d467e29363474a723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165168418303190$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1476417$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiang, Yijian</creatorcontrib><creatorcontrib>Akcakaya, Murat</creatorcontrib><creatorcontrib>Sen, Satyabrata</creatorcontrib><creatorcontrib>Erdogmus, Deniz</creatorcontrib><creatorcontrib>Nehorai, Arye</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Target tracking via recursive Bayesian state estimation in cognitive radar networks</title><title>Signal processing</title><description>•A framework for single target tracking in cognitive networks of radars is proposed.•Waveform design, path planning, and radar selection are jointly considered.•Combinatorial optimization and recursive Bayesian estimation are used for tracking.•Proposed framework is illustrated with a numerical example.
To cope with complicated environments and stealthier targets, incorporating intelligence and cognition cycles into target tracking is of great importance in modern sensor network management. With remarkable advances in sensor techniques and deployable platforms, a sensing system has freedom to select a subset of available radars, plan their trajectories, and transmit designed waveforms. In this paper, we propose a general framework for single target tracking in cognitive networks of radars, including consideration of waveform design, path planning, and radar selection, which are separately but not jointly taken into account in existing work. The tracking procedure, built on the theories of dynamic graphical models (DGM) and recursive Bayesian state estimation (RBSE), is formulated as two iterative steps: (i) solving a combinatorial optimization problem to select the optimal subset of radars, waveforms, and locations for the next tracking instant, and (ii) acquiring the recursive Bayesian state estimation to accurately track the target. Further, an illustrative example introduces a specific scenario in 2-D space. Simulation results based on the scenario demonstrate that the proposed framework can accurately track the target under the management of the network of radars.</description><subject>Network of radars</subject><subject>OTHER INSTRUMENTATION</subject><subject>Path planning</subject><subject>Recursive Bayesian state estimation</subject><subject>Sensor selection</subject><subject>Target tracking</subject><subject>Waveform design</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwDxgs9gS_YscLElS8pEoMlNlyndvgFuzKNkX8exKFmeku53y650PokpKaEiqvt3X2_T7FmhHa1kTXhDdHaEZbxSrVNOoYzYZYU1HZilN0lvOWEEK5JDP0urKph4JLsm7nQ48P3uIE7itlfwB8Z38gextwLrYAhlz8py0-BuwDdrEPvoyxZDubcIDyHdMun6OTjf3IcPF35-jt4X61eKqWL4_Pi9tl5bjSpZJMamcl2E4q5XjrCNFSMMGg0cSCaB1rYC1pt-YtbKjshFTANJdcKGEV43N0NXHj8JbJzhdw7y6GAK4YKpQUVA0hMYVcijkn2Jh9GjakH0OJGe2ZrZnsmdGeIdoM9obazVSDYcDBQxr5EBx0Po34Lvr_Ab_ypXsc</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Xiang, Yijian</creator><creator>Akcakaya, Murat</creator><creator>Sen, Satyabrata</creator><creator>Erdogmus, Deniz</creator><creator>Nehorai, Arye</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20190201</creationdate><title>Target tracking via recursive Bayesian state estimation in cognitive radar networks</title><author>Xiang, Yijian ; Akcakaya, Murat ; Sen, Satyabrata ; Erdogmus, Deniz ; Nehorai, Arye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-6269ca6ead677c38c00964242e590ae48c25eb61db38ef16d467e29363474a723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Network of radars</topic><topic>OTHER INSTRUMENTATION</topic><topic>Path planning</topic><topic>Recursive Bayesian state estimation</topic><topic>Sensor selection</topic><topic>Target tracking</topic><topic>Waveform design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Yijian</creatorcontrib><creatorcontrib>Akcakaya, Murat</creatorcontrib><creatorcontrib>Sen, Satyabrata</creatorcontrib><creatorcontrib>Erdogmus, Deniz</creatorcontrib><creatorcontrib>Nehorai, Arye</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Yijian</au><au>Akcakaya, Murat</au><au>Sen, Satyabrata</au><au>Erdogmus, Deniz</au><au>Nehorai, Arye</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Target tracking via recursive Bayesian state estimation in cognitive radar networks</atitle><jtitle>Signal processing</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>155</volume><issue>C</issue><spage>157</spage><epage>169</epage><pages>157-169</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><abstract>•A framework for single target tracking in cognitive networks of radars is proposed.•Waveform design, path planning, and radar selection are jointly considered.•Combinatorial optimization and recursive Bayesian estimation are used for tracking.•Proposed framework is illustrated with a numerical example.
To cope with complicated environments and stealthier targets, incorporating intelligence and cognition cycles into target tracking is of great importance in modern sensor network management. With remarkable advances in sensor techniques and deployable platforms, a sensing system has freedom to select a subset of available radars, plan their trajectories, and transmit designed waveforms. In this paper, we propose a general framework for single target tracking in cognitive networks of radars, including consideration of waveform design, path planning, and radar selection, which are separately but not jointly taken into account in existing work. The tracking procedure, built on the theories of dynamic graphical models (DGM) and recursive Bayesian state estimation (RBSE), is formulated as two iterative steps: (i) solving a combinatorial optimization problem to select the optimal subset of radars, waveforms, and locations for the next tracking instant, and (ii) acquiring the recursive Bayesian state estimation to accurately track the target. Further, an illustrative example introduces a specific scenario in 2-D space. Simulation results based on the scenario demonstrate that the proposed framework can accurately track the target under the management of the network of radars.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2018.09.035</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1684 |
ispartof | Signal processing, 2019-02, Vol.155 (C), p.157-169 |
issn | 0165-1684 1872-7557 |
language | eng |
recordid | cdi_osti_scitechconnect_1476417 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Network of radars OTHER INSTRUMENTATION Path planning Recursive Bayesian state estimation Sensor selection Target tracking Waveform design |
title | Target tracking via recursive Bayesian state estimation in cognitive radar networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Target%20tracking%20via%20recursive%20Bayesian%20state%20estimation%20in%20cognitive%20radar%20networks&rft.jtitle=Signal%20processing&rft.au=Xiang,%20Yijian&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019-02-01&rft.volume=155&rft.issue=C&rft.spage=157&rft.epage=169&rft.pages=157-169&rft.issn=0165-1684&rft.eissn=1872-7557&rft_id=info:doi/10.1016/j.sigpro.2018.09.035&rft_dat=%3Celsevier_osti_%3ES0165168418303190%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0165168418303190&rfr_iscdi=true |