Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates

The rates of Brønsted-acid-catalyzed reactions of ethyl tert -butyl ether, tert -butanol, levoglucosan, 1,2-propanediol, fructose, cellobiose, and xylitol were measured in solvent mixtures of water with three polar aprotic cosolvents: γ-valerolactone; 1,4-dioxane; and tetrahydrofuran. As the water c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2018-01, Vol.11 (3), p.617-628
Hauptverfasser: Walker, Theodore W., Chew, Alex K., Li, Huixiang, Demir, Benginur, Zhang, Z. Conrad, Huber, George W., Van Lehn, Reid C., Dumesic, James A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 628
container_issue 3
container_start_page 617
container_title Energy & environmental science
container_volume 11
creator Walker, Theodore W.
Chew, Alex K.
Li, Huixiang
Demir, Benginur
Zhang, Z. Conrad
Huber, George W.
Van Lehn, Reid C.
Dumesic, James A.
description The rates of Brønsted-acid-catalyzed reactions of ethyl tert -butyl ether, tert -butanol, levoglucosan, 1,2-propanediol, fructose, cellobiose, and xylitol were measured in solvent mixtures of water with three polar aprotic cosolvents: γ-valerolactone; 1,4-dioxane; and tetrahydrofuran. As the water content of the solvent environment decreases, reactants with more hydroxyl groups have higher catalytic turnover rates for both hydrolysis and dehydration reactions. We present classical molecular dynamics simulations to explain these solvent effects in terms of three simulation-derived observables: (1) the extent of water enrichment in the local solvent domain of the reactant; (2) the average hydrogen bonding lifetime between water molecules and the reactant; and (3) the fraction of the reactant accessible surface area occupied by hydroxyl groups, all as a function of solvent composition. We develop a model, constituted by linear combinations of these three observables, that predicts experimentally determined rate constants as a function of solvent composition for the entire set of acid-catalyzed reactions.
doi_str_mv 10.1039/C7EE03432F
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1475402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2013690548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-d3fccaf076576b2323123c4e46b49d4efd322c5fec848b34822691367b720c4a3</originalsourceid><addsrcrecordid>eNpFkE1PAyEURYnRxPqx8RcQ3ZmMMsBAZ2maVk2auLErF4RhHkqdQgXaWH-9mGpcvbs4ObnvInRRk5uasPZ2IqdTwjijswM0qmXDq0YScfiXRUuP0UlKS0IEJbIdoZeFd1uISQ_43XnIzuAUhi34jMFaMDlh57E2rq-MznrYfUGPI2iTXfAJB4s7F1Y6paqHWEw9Dp-7V_A6QzpDR1YPCc5_7ylazKbPk4dq_nT_OLmbV4bTJlc9s8ZoS6RopOgoo6ymzHDgouNtz8H2jFLTlDJjPu4YH1Mq2poJ2UlKDNfsFF3uvSFlp5JxGcybCd6X-qrm5XNCC3S1h9YxfGwgZbUMm-hLL0VJsbWk4eNCXe8pE0NKEaxaR7fScadqon4WVv8Ls2-F4m2q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2013690548</pqid></control><display><type>article</type><title>Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates</title><source>Royal Society Of Chemistry Journals</source><creator>Walker, Theodore W. ; Chew, Alex K. ; Li, Huixiang ; Demir, Benginur ; Zhang, Z. Conrad ; Huber, George W. ; Van Lehn, Reid C. ; Dumesic, James A.</creator><creatorcontrib>Walker, Theodore W. ; Chew, Alex K. ; Li, Huixiang ; Demir, Benginur ; Zhang, Z. Conrad ; Huber, George W. ; Van Lehn, Reid C. ; Dumesic, James A. ; Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><description>The rates of Brønsted-acid-catalyzed reactions of ethyl tert -butyl ether, tert -butanol, levoglucosan, 1,2-propanediol, fructose, cellobiose, and xylitol were measured in solvent mixtures of water with three polar aprotic cosolvents: γ-valerolactone; 1,4-dioxane; and tetrahydrofuran. As the water content of the solvent environment decreases, reactants with more hydroxyl groups have higher catalytic turnover rates for both hydrolysis and dehydration reactions. We present classical molecular dynamics simulations to explain these solvent effects in terms of three simulation-derived observables: (1) the extent of water enrichment in the local solvent domain of the reactant; (2) the average hydrogen bonding lifetime between water molecules and the reactant; and (3) the fraction of the reactant accessible surface area occupied by hydroxyl groups, all as a function of solvent composition. We develop a model, constituted by linear combinations of these three observables, that predicts experimentally determined rate constants as a function of solvent composition for the entire set of acid-catalyzed reactions.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/C7EE03432F</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acids ; Butanol ; Catalysis ; Cellobiose ; Chemical bonds ; Chemical reactions ; Computer simulation ; Dehydration ; Fructose ; Hydrogen bonding ; Hydroxyl groups ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Levoglucosan ; Moisture content ; Molecular dynamics ; Rate constants ; Solvent effect ; Solvents ; Tert-butanol ; Tetrahydrofuran ; Water chemistry ; Water content ; Xylitol</subject><ispartof>Energy &amp; environmental science, 2018-01, Vol.11 (3), p.617-628</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-d3fccaf076576b2323123c4e46b49d4efd322c5fec848b34822691367b720c4a3</citedby><cites>FETCH-LOGICAL-c425t-d3fccaf076576b2323123c4e46b49d4efd322c5fec848b34822691367b720c4a3</cites><orcidid>0000-0003-4459-021X ; 0000-0002-7051-9778 ; 0000-0002-7838-6893 ; 0000-0003-4885-6599 ; 0000-0001-8292-1169 ; 0000-0003-3469-906X ; 000000033469906X ; 0000000182921169 ; 000000034459021X ; 0000000270519778 ; 0000000348856599 ; 0000000278386893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27933,27934</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1475402$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Walker, Theodore W.</creatorcontrib><creatorcontrib>Chew, Alex K.</creatorcontrib><creatorcontrib>Li, Huixiang</creatorcontrib><creatorcontrib>Demir, Benginur</creatorcontrib><creatorcontrib>Zhang, Z. Conrad</creatorcontrib><creatorcontrib>Huber, George W.</creatorcontrib><creatorcontrib>Van Lehn, Reid C.</creatorcontrib><creatorcontrib>Dumesic, James A.</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><title>Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates</title><title>Energy &amp; environmental science</title><description>The rates of Brønsted-acid-catalyzed reactions of ethyl tert -butyl ether, tert -butanol, levoglucosan, 1,2-propanediol, fructose, cellobiose, and xylitol were measured in solvent mixtures of water with three polar aprotic cosolvents: γ-valerolactone; 1,4-dioxane; and tetrahydrofuran. As the water content of the solvent environment decreases, reactants with more hydroxyl groups have higher catalytic turnover rates for both hydrolysis and dehydration reactions. We present classical molecular dynamics simulations to explain these solvent effects in terms of three simulation-derived observables: (1) the extent of water enrichment in the local solvent domain of the reactant; (2) the average hydrogen bonding lifetime between water molecules and the reactant; and (3) the fraction of the reactant accessible surface area occupied by hydroxyl groups, all as a function of solvent composition. We develop a model, constituted by linear combinations of these three observables, that predicts experimentally determined rate constants as a function of solvent composition for the entire set of acid-catalyzed reactions.</description><subject>Acids</subject><subject>Butanol</subject><subject>Catalysis</subject><subject>Cellobiose</subject><subject>Chemical bonds</subject><subject>Chemical reactions</subject><subject>Computer simulation</subject><subject>Dehydration</subject><subject>Fructose</subject><subject>Hydrogen bonding</subject><subject>Hydroxyl groups</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Levoglucosan</subject><subject>Moisture content</subject><subject>Molecular dynamics</subject><subject>Rate constants</subject><subject>Solvent effect</subject><subject>Solvents</subject><subject>Tert-butanol</subject><subject>Tetrahydrofuran</subject><subject>Water chemistry</subject><subject>Water content</subject><subject>Xylitol</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkE1PAyEURYnRxPqx8RcQ3ZmMMsBAZ2maVk2auLErF4RhHkqdQgXaWH-9mGpcvbs4ObnvInRRk5uasPZ2IqdTwjijswM0qmXDq0YScfiXRUuP0UlKS0IEJbIdoZeFd1uISQ_43XnIzuAUhi34jMFaMDlh57E2rq-MznrYfUGPI2iTXfAJB4s7F1Y6paqHWEw9Dp-7V_A6QzpDR1YPCc5_7ylazKbPk4dq_nT_OLmbV4bTJlc9s8ZoS6RopOgoo6ymzHDgouNtz8H2jFLTlDJjPu4YH1Mq2poJ2UlKDNfsFF3uvSFlp5JxGcybCd6X-qrm5XNCC3S1h9YxfGwgZbUMm-hLL0VJsbWk4eNCXe8pE0NKEaxaR7fScadqon4WVv8Ls2-F4m2q</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Walker, Theodore W.</creator><creator>Chew, Alex K.</creator><creator>Li, Huixiang</creator><creator>Demir, Benginur</creator><creator>Zhang, Z. Conrad</creator><creator>Huber, George W.</creator><creator>Van Lehn, Reid C.</creator><creator>Dumesic, James A.</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4459-021X</orcidid><orcidid>https://orcid.org/0000-0002-7051-9778</orcidid><orcidid>https://orcid.org/0000-0002-7838-6893</orcidid><orcidid>https://orcid.org/0000-0003-4885-6599</orcidid><orcidid>https://orcid.org/0000-0001-8292-1169</orcidid><orcidid>https://orcid.org/0000-0003-3469-906X</orcidid><orcidid>https://orcid.org/000000033469906X</orcidid><orcidid>https://orcid.org/0000000182921169</orcidid><orcidid>https://orcid.org/000000034459021X</orcidid><orcidid>https://orcid.org/0000000270519778</orcidid><orcidid>https://orcid.org/0000000348856599</orcidid><orcidid>https://orcid.org/0000000278386893</orcidid></search><sort><creationdate>20180101</creationdate><title>Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates</title><author>Walker, Theodore W. ; Chew, Alex K. ; Li, Huixiang ; Demir, Benginur ; Zhang, Z. Conrad ; Huber, George W. ; Van Lehn, Reid C. ; Dumesic, James A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-d3fccaf076576b2323123c4e46b49d4efd322c5fec848b34822691367b720c4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acids</topic><topic>Butanol</topic><topic>Catalysis</topic><topic>Cellobiose</topic><topic>Chemical bonds</topic><topic>Chemical reactions</topic><topic>Computer simulation</topic><topic>Dehydration</topic><topic>Fructose</topic><topic>Hydrogen bonding</topic><topic>Hydroxyl groups</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Levoglucosan</topic><topic>Moisture content</topic><topic>Molecular dynamics</topic><topic>Rate constants</topic><topic>Solvent effect</topic><topic>Solvents</topic><topic>Tert-butanol</topic><topic>Tetrahydrofuran</topic><topic>Water chemistry</topic><topic>Water content</topic><topic>Xylitol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walker, Theodore W.</creatorcontrib><creatorcontrib>Chew, Alex K.</creatorcontrib><creatorcontrib>Li, Huixiang</creatorcontrib><creatorcontrib>Demir, Benginur</creatorcontrib><creatorcontrib>Zhang, Z. Conrad</creatorcontrib><creatorcontrib>Huber, George W.</creatorcontrib><creatorcontrib>Van Lehn, Reid C.</creatorcontrib><creatorcontrib>Dumesic, James A.</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walker, Theodore W.</au><au>Chew, Alex K.</au><au>Li, Huixiang</au><au>Demir, Benginur</au><au>Zhang, Z. Conrad</au><au>Huber, George W.</au><au>Van Lehn, Reid C.</au><au>Dumesic, James A.</au><aucorp>Univ. of Wisconsin, Madison, WI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>11</volume><issue>3</issue><spage>617</spage><epage>628</epage><pages>617-628</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>The rates of Brønsted-acid-catalyzed reactions of ethyl tert -butyl ether, tert -butanol, levoglucosan, 1,2-propanediol, fructose, cellobiose, and xylitol were measured in solvent mixtures of water with three polar aprotic cosolvents: γ-valerolactone; 1,4-dioxane; and tetrahydrofuran. As the water content of the solvent environment decreases, reactants with more hydroxyl groups have higher catalytic turnover rates for both hydrolysis and dehydration reactions. We present classical molecular dynamics simulations to explain these solvent effects in terms of three simulation-derived observables: (1) the extent of water enrichment in the local solvent domain of the reactant; (2) the average hydrogen bonding lifetime between water molecules and the reactant; and (3) the fraction of the reactant accessible surface area occupied by hydroxyl groups, all as a function of solvent composition. We develop a model, constituted by linear combinations of these three observables, that predicts experimentally determined rate constants as a function of solvent composition for the entire set of acid-catalyzed reactions.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C7EE03432F</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4459-021X</orcidid><orcidid>https://orcid.org/0000-0002-7051-9778</orcidid><orcidid>https://orcid.org/0000-0002-7838-6893</orcidid><orcidid>https://orcid.org/0000-0003-4885-6599</orcidid><orcidid>https://orcid.org/0000-0001-8292-1169</orcidid><orcidid>https://orcid.org/0000-0003-3469-906X</orcidid><orcidid>https://orcid.org/000000033469906X</orcidid><orcidid>https://orcid.org/0000000182921169</orcidid><orcidid>https://orcid.org/000000034459021X</orcidid><orcidid>https://orcid.org/0000000270519778</orcidid><orcidid>https://orcid.org/0000000348856599</orcidid><orcidid>https://orcid.org/0000000278386893</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2018-01, Vol.11 (3), p.617-628
issn 1754-5692
1754-5706
language eng
recordid cdi_osti_scitechconnect_1475402
source Royal Society Of Chemistry Journals
subjects Acids
Butanol
Catalysis
Cellobiose
Chemical bonds
Chemical reactions
Computer simulation
Dehydration
Fructose
Hydrogen bonding
Hydroxyl groups
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Levoglucosan
Moisture content
Molecular dynamics
Rate constants
Solvent effect
Solvents
Tert-butanol
Tetrahydrofuran
Water chemistry
Water content
Xylitol
title Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T10%3A34%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20kinetic%20solvent%20effects%20in%20acid-catalyzed%20reactions%20of%20biomass-derived%20oxygenates&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Walker,%20Theodore%20W.&rft.aucorp=Univ.%20of%20Wisconsin,%20Madison,%20WI%20(United%20States)&rft.date=2018-01-01&rft.volume=11&rft.issue=3&rft.spage=617&rft.epage=628&rft.pages=617-628&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/C7EE03432F&rft_dat=%3Cproquest_osti_%3E2013690548%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2013690548&rft_id=info:pmid/&rfr_iscdi=true