Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates
The rates of Brønsted-acid-catalyzed reactions of ethyl tert -butyl ether, tert -butanol, levoglucosan, 1,2-propanediol, fructose, cellobiose, and xylitol were measured in solvent mixtures of water with three polar aprotic cosolvents: γ-valerolactone; 1,4-dioxane; and tetrahydrofuran. As the water c...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2018-01, Vol.11 (3), p.617-628 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 628 |
---|---|
container_issue | 3 |
container_start_page | 617 |
container_title | Energy & environmental science |
container_volume | 11 |
creator | Walker, Theodore W. Chew, Alex K. Li, Huixiang Demir, Benginur Zhang, Z. Conrad Huber, George W. Van Lehn, Reid C. Dumesic, James A. |
description | The rates of Brønsted-acid-catalyzed reactions of ethyl tert -butyl ether, tert -butanol, levoglucosan, 1,2-propanediol, fructose, cellobiose, and xylitol were measured in solvent mixtures of water with three polar aprotic cosolvents: γ-valerolactone; 1,4-dioxane; and tetrahydrofuran. As the water content of the solvent environment decreases, reactants with more hydroxyl groups have higher catalytic turnover rates for both hydrolysis and dehydration reactions. We present classical molecular dynamics simulations to explain these solvent effects in terms of three simulation-derived observables: (1) the extent of water enrichment in the local solvent domain of the reactant; (2) the average hydrogen bonding lifetime between water molecules and the reactant; and (3) the fraction of the reactant accessible surface area occupied by hydroxyl groups, all as a function of solvent composition. We develop a model, constituted by linear combinations of these three observables, that predicts experimentally determined rate constants as a function of solvent composition for the entire set of acid-catalyzed reactions. |
doi_str_mv | 10.1039/C7EE03432F |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1475402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2013690548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-d3fccaf076576b2323123c4e46b49d4efd322c5fec848b34822691367b720c4a3</originalsourceid><addsrcrecordid>eNpFkE1PAyEURYnRxPqx8RcQ3ZmMMsBAZ2maVk2auLErF4RhHkqdQgXaWH-9mGpcvbs4ObnvInRRk5uasPZ2IqdTwjijswM0qmXDq0YScfiXRUuP0UlKS0IEJbIdoZeFd1uISQ_43XnIzuAUhi34jMFaMDlh57E2rq-MznrYfUGPI2iTXfAJB4s7F1Y6paqHWEw9Dp-7V_A6QzpDR1YPCc5_7ylazKbPk4dq_nT_OLmbV4bTJlc9s8ZoS6RopOgoo6ymzHDgouNtz8H2jFLTlDJjPu4YH1Mq2poJ2UlKDNfsFF3uvSFlp5JxGcybCd6X-qrm5XNCC3S1h9YxfGwgZbUMm-hLL0VJsbWk4eNCXe8pE0NKEaxaR7fScadqon4WVv8Ls2-F4m2q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2013690548</pqid></control><display><type>article</type><title>Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates</title><source>Royal Society Of Chemistry Journals</source><creator>Walker, Theodore W. ; Chew, Alex K. ; Li, Huixiang ; Demir, Benginur ; Zhang, Z. Conrad ; Huber, George W. ; Van Lehn, Reid C. ; Dumesic, James A.</creator><creatorcontrib>Walker, Theodore W. ; Chew, Alex K. ; Li, Huixiang ; Demir, Benginur ; Zhang, Z. Conrad ; Huber, George W. ; Van Lehn, Reid C. ; Dumesic, James A. ; Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><description>The rates of Brønsted-acid-catalyzed reactions of ethyl tert -butyl ether, tert -butanol, levoglucosan, 1,2-propanediol, fructose, cellobiose, and xylitol were measured in solvent mixtures of water with three polar aprotic cosolvents: γ-valerolactone; 1,4-dioxane; and tetrahydrofuran. As the water content of the solvent environment decreases, reactants with more hydroxyl groups have higher catalytic turnover rates for both hydrolysis and dehydration reactions. We present classical molecular dynamics simulations to explain these solvent effects in terms of three simulation-derived observables: (1) the extent of water enrichment in the local solvent domain of the reactant; (2) the average hydrogen bonding lifetime between water molecules and the reactant; and (3) the fraction of the reactant accessible surface area occupied by hydroxyl groups, all as a function of solvent composition. We develop a model, constituted by linear combinations of these three observables, that predicts experimentally determined rate constants as a function of solvent composition for the entire set of acid-catalyzed reactions.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/C7EE03432F</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acids ; Butanol ; Catalysis ; Cellobiose ; Chemical bonds ; Chemical reactions ; Computer simulation ; Dehydration ; Fructose ; Hydrogen bonding ; Hydroxyl groups ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Levoglucosan ; Moisture content ; Molecular dynamics ; Rate constants ; Solvent effect ; Solvents ; Tert-butanol ; Tetrahydrofuran ; Water chemistry ; Water content ; Xylitol</subject><ispartof>Energy & environmental science, 2018-01, Vol.11 (3), p.617-628</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-d3fccaf076576b2323123c4e46b49d4efd322c5fec848b34822691367b720c4a3</citedby><cites>FETCH-LOGICAL-c425t-d3fccaf076576b2323123c4e46b49d4efd322c5fec848b34822691367b720c4a3</cites><orcidid>0000-0003-4459-021X ; 0000-0002-7051-9778 ; 0000-0002-7838-6893 ; 0000-0003-4885-6599 ; 0000-0001-8292-1169 ; 0000-0003-3469-906X ; 000000033469906X ; 0000000182921169 ; 000000034459021X ; 0000000270519778 ; 0000000348856599 ; 0000000278386893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27933,27934</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1475402$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Walker, Theodore W.</creatorcontrib><creatorcontrib>Chew, Alex K.</creatorcontrib><creatorcontrib>Li, Huixiang</creatorcontrib><creatorcontrib>Demir, Benginur</creatorcontrib><creatorcontrib>Zhang, Z. Conrad</creatorcontrib><creatorcontrib>Huber, George W.</creatorcontrib><creatorcontrib>Van Lehn, Reid C.</creatorcontrib><creatorcontrib>Dumesic, James A.</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><title>Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates</title><title>Energy & environmental science</title><description>The rates of Brønsted-acid-catalyzed reactions of ethyl tert -butyl ether, tert -butanol, levoglucosan, 1,2-propanediol, fructose, cellobiose, and xylitol were measured in solvent mixtures of water with three polar aprotic cosolvents: γ-valerolactone; 1,4-dioxane; and tetrahydrofuran. As the water content of the solvent environment decreases, reactants with more hydroxyl groups have higher catalytic turnover rates for both hydrolysis and dehydration reactions. We present classical molecular dynamics simulations to explain these solvent effects in terms of three simulation-derived observables: (1) the extent of water enrichment in the local solvent domain of the reactant; (2) the average hydrogen bonding lifetime between water molecules and the reactant; and (3) the fraction of the reactant accessible surface area occupied by hydroxyl groups, all as a function of solvent composition. We develop a model, constituted by linear combinations of these three observables, that predicts experimentally determined rate constants as a function of solvent composition for the entire set of acid-catalyzed reactions.</description><subject>Acids</subject><subject>Butanol</subject><subject>Catalysis</subject><subject>Cellobiose</subject><subject>Chemical bonds</subject><subject>Chemical reactions</subject><subject>Computer simulation</subject><subject>Dehydration</subject><subject>Fructose</subject><subject>Hydrogen bonding</subject><subject>Hydroxyl groups</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Levoglucosan</subject><subject>Moisture content</subject><subject>Molecular dynamics</subject><subject>Rate constants</subject><subject>Solvent effect</subject><subject>Solvents</subject><subject>Tert-butanol</subject><subject>Tetrahydrofuran</subject><subject>Water chemistry</subject><subject>Water content</subject><subject>Xylitol</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkE1PAyEURYnRxPqx8RcQ3ZmMMsBAZ2maVk2auLErF4RhHkqdQgXaWH-9mGpcvbs4ObnvInRRk5uasPZ2IqdTwjijswM0qmXDq0YScfiXRUuP0UlKS0IEJbIdoZeFd1uISQ_43XnIzuAUhi34jMFaMDlh57E2rq-MznrYfUGPI2iTXfAJB4s7F1Y6paqHWEw9Dp-7V_A6QzpDR1YPCc5_7ylazKbPk4dq_nT_OLmbV4bTJlc9s8ZoS6RopOgoo6ymzHDgouNtz8H2jFLTlDJjPu4YH1Mq2poJ2UlKDNfsFF3uvSFlp5JxGcybCd6X-qrm5XNCC3S1h9YxfGwgZbUMm-hLL0VJsbWk4eNCXe8pE0NKEaxaR7fScadqon4WVv8Ls2-F4m2q</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Walker, Theodore W.</creator><creator>Chew, Alex K.</creator><creator>Li, Huixiang</creator><creator>Demir, Benginur</creator><creator>Zhang, Z. Conrad</creator><creator>Huber, George W.</creator><creator>Van Lehn, Reid C.</creator><creator>Dumesic, James A.</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4459-021X</orcidid><orcidid>https://orcid.org/0000-0002-7051-9778</orcidid><orcidid>https://orcid.org/0000-0002-7838-6893</orcidid><orcidid>https://orcid.org/0000-0003-4885-6599</orcidid><orcidid>https://orcid.org/0000-0001-8292-1169</orcidid><orcidid>https://orcid.org/0000-0003-3469-906X</orcidid><orcidid>https://orcid.org/000000033469906X</orcidid><orcidid>https://orcid.org/0000000182921169</orcidid><orcidid>https://orcid.org/000000034459021X</orcidid><orcidid>https://orcid.org/0000000270519778</orcidid><orcidid>https://orcid.org/0000000348856599</orcidid><orcidid>https://orcid.org/0000000278386893</orcidid></search><sort><creationdate>20180101</creationdate><title>Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates</title><author>Walker, Theodore W. ; Chew, Alex K. ; Li, Huixiang ; Demir, Benginur ; Zhang, Z. Conrad ; Huber, George W. ; Van Lehn, Reid C. ; Dumesic, James A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-d3fccaf076576b2323123c4e46b49d4efd322c5fec848b34822691367b720c4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acids</topic><topic>Butanol</topic><topic>Catalysis</topic><topic>Cellobiose</topic><topic>Chemical bonds</topic><topic>Chemical reactions</topic><topic>Computer simulation</topic><topic>Dehydration</topic><topic>Fructose</topic><topic>Hydrogen bonding</topic><topic>Hydroxyl groups</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Levoglucosan</topic><topic>Moisture content</topic><topic>Molecular dynamics</topic><topic>Rate constants</topic><topic>Solvent effect</topic><topic>Solvents</topic><topic>Tert-butanol</topic><topic>Tetrahydrofuran</topic><topic>Water chemistry</topic><topic>Water content</topic><topic>Xylitol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walker, Theodore W.</creatorcontrib><creatorcontrib>Chew, Alex K.</creatorcontrib><creatorcontrib>Li, Huixiang</creatorcontrib><creatorcontrib>Demir, Benginur</creatorcontrib><creatorcontrib>Zhang, Z. Conrad</creatorcontrib><creatorcontrib>Huber, George W.</creatorcontrib><creatorcontrib>Van Lehn, Reid C.</creatorcontrib><creatorcontrib>Dumesic, James A.</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walker, Theodore W.</au><au>Chew, Alex K.</au><au>Li, Huixiang</au><au>Demir, Benginur</au><au>Zhang, Z. Conrad</au><au>Huber, George W.</au><au>Van Lehn, Reid C.</au><au>Dumesic, James A.</au><aucorp>Univ. of Wisconsin, Madison, WI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates</atitle><jtitle>Energy & environmental science</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>11</volume><issue>3</issue><spage>617</spage><epage>628</epage><pages>617-628</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>The rates of Brønsted-acid-catalyzed reactions of ethyl tert -butyl ether, tert -butanol, levoglucosan, 1,2-propanediol, fructose, cellobiose, and xylitol were measured in solvent mixtures of water with three polar aprotic cosolvents: γ-valerolactone; 1,4-dioxane; and tetrahydrofuran. As the water content of the solvent environment decreases, reactants with more hydroxyl groups have higher catalytic turnover rates for both hydrolysis and dehydration reactions. We present classical molecular dynamics simulations to explain these solvent effects in terms of three simulation-derived observables: (1) the extent of water enrichment in the local solvent domain of the reactant; (2) the average hydrogen bonding lifetime between water molecules and the reactant; and (3) the fraction of the reactant accessible surface area occupied by hydroxyl groups, all as a function of solvent composition. We develop a model, constituted by linear combinations of these three observables, that predicts experimentally determined rate constants as a function of solvent composition for the entire set of acid-catalyzed reactions.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C7EE03432F</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4459-021X</orcidid><orcidid>https://orcid.org/0000-0002-7051-9778</orcidid><orcidid>https://orcid.org/0000-0002-7838-6893</orcidid><orcidid>https://orcid.org/0000-0003-4885-6599</orcidid><orcidid>https://orcid.org/0000-0001-8292-1169</orcidid><orcidid>https://orcid.org/0000-0003-3469-906X</orcidid><orcidid>https://orcid.org/000000033469906X</orcidid><orcidid>https://orcid.org/0000000182921169</orcidid><orcidid>https://orcid.org/000000034459021X</orcidid><orcidid>https://orcid.org/0000000270519778</orcidid><orcidid>https://orcid.org/0000000348856599</orcidid><orcidid>https://orcid.org/0000000278386893</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2018-01, Vol.11 (3), p.617-628 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_osti_scitechconnect_1475402 |
source | Royal Society Of Chemistry Journals |
subjects | Acids Butanol Catalysis Cellobiose Chemical bonds Chemical reactions Computer simulation Dehydration Fructose Hydrogen bonding Hydroxyl groups INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Levoglucosan Moisture content Molecular dynamics Rate constants Solvent effect Solvents Tert-butanol Tetrahydrofuran Water chemistry Water content Xylitol |
title | Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T10%3A34%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20kinetic%20solvent%20effects%20in%20acid-catalyzed%20reactions%20of%20biomass-derived%20oxygenates&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Walker,%20Theodore%20W.&rft.aucorp=Univ.%20of%20Wisconsin,%20Madison,%20WI%20(United%20States)&rft.date=2018-01-01&rft.volume=11&rft.issue=3&rft.spage=617&rft.epage=628&rft.pages=617-628&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/C7EE03432F&rft_dat=%3Cproquest_osti_%3E2013690548%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2013690548&rft_id=info:pmid/&rfr_iscdi=true |