n-Heptane cool flame chemistry: Unraveling intermediate species measured in a stirred reactor and motored engine

This work identifies classes of cool flame intermediates from n-heptane low-temperature oxidation in a jet-stirred reactor (JSR) and a motored cooperative fuel research (CFR) engine. The sampled species from the JSR oxidation of a mixture of n-heptane/O2/Ar (0.01/0.11/0.88) were analyzed using a syn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2018-01, Vol.187, p.199-216
Hauptverfasser: Wang, Zhandong, Chen, Bingjie, Moshammer, Kai, Popolan-Vaida, Denisia M., Sioud, Salim, Shankar, Vijai Shankar Bhavani, Vuilleumier, David, Tao, Tao, Ruwe, Lena, Bräuer, Eike, Hansen, Nils, Dagaut, Philippe, Kohse-Höinghaus, Katharina, Raji, Misjudeen A., Sarathy, S. Mani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 216
container_issue
container_start_page 199
container_title Combustion and flame
container_volume 187
creator Wang, Zhandong
Chen, Bingjie
Moshammer, Kai
Popolan-Vaida, Denisia M.
Sioud, Salim
Shankar, Vijai Shankar Bhavani
Vuilleumier, David
Tao, Tao
Ruwe, Lena
Bräuer, Eike
Hansen, Nils
Dagaut, Philippe
Kohse-Höinghaus, Katharina
Raji, Misjudeen A.
Sarathy, S. Mani
description This work identifies classes of cool flame intermediates from n-heptane low-temperature oxidation in a jet-stirred reactor (JSR) and a motored cooperative fuel research (CFR) engine. The sampled species from the JSR oxidation of a mixture of n-heptane/O2/Ar (0.01/0.11/0.88) were analyzed using a synchrotron vacuum ultraviolet radiation photoionization (SVUV-PI) time-of-flight molecular-beam mass spectrometer (MBMS) and an atmospheric pressure chemical ionization (APCI) Orbitrap mass spectrometer (OTMS). The OTMS was also used to analyze the sampled species from a CFR engine exhaust. Approximately 70 intermediates were detected by the SVUV-PI-MBMS, and their assigned molecular formulae are in good agreement with those detected by the APCI-OTMS, which has ultra-high mass resolving power and provides an accurate elemental C/H/O composition of the intermediate species. Furthermore, the results show that the species formed during the partial oxidation of n-heptane in the CFR engine are very similar to those produced in an ideal reactor, i.e., a JSR. The products can be classified by species with molecular formulae of C7H14Ox (x = 0–5), C7H12Ox (x = 0–4), C7H10Ox (x = 0–4), CnH2n (n = 2–6), CnH2n−2 (n = 4–6), CnH2n+2O (n = 1–4), CnH2nO (n = 1–6), CnH2n−2O (n = 2–6), CnH2n−4O (n = 4–6), CnH2n+2O2 (n = 0–4, 7), CnH2nO2 (n = 1–6), CnH2n−2O2 (n = 2–6), CnH2n−4O2 (n = 4–6), and CnH2nO3 (n = 3–6). The identified intermediate species include alkenes, dienes, aldehyde/keto compounds, olefinic aldehyde/keto compounds, diones, cyclic ethers, peroxides, acids, and alcohols/ethers. Reaction pathways forming these intermediates are proposed and discussed herein. These experimental results are important in the development of more accurate kinetic models for n-heptane and longer-chain alkanes.
doi_str_mv 10.1016/j.combustflame.2017.09.003
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1474083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218017303334</els_id><sourcerecordid>1971740254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-6ce9c16d500c39a74b42b1efadd0a450cd82b6b78eff5c41744d0d2e8520d4043</originalsourceid><addsrcrecordid>eNqNUU1v3CAQRVUjZZvkP6D01IPdAeOv3KL0Yyut1EtzRhjGWVY2uMCulH9fXFdVjz0xzLx5PN4j5J5ByYA1H0-l9vNwjmmc1IwlB9aW0JcA1RuyY3XdFLzn7C3ZATAoOOvgmryL8QQAraiqHVlcscclKYdUez_R3zxUH3G2MYXXB_rsgrrgZN0LtS5hmNFYlZDGBbXFSGdU8RzQ5ClVNCYb1ktApZMPVDlDZ5-r3EP3Yh3ekqtRTRHv_pw35PnL5x9P--Lw_eu3p8dDoWvgqWg09po1pgbQVa9aMQg-MByVMaBEDdp0fGiGtsNxrLVgrRAGDMeu5mAEiOqG3G-8PmuSUduE-qi9c6iTZKIV0FUZ9GEDHdUkl2BnFV6lV1buHw9y7UF2tO769sIy9v2GXYL_ecaY5Mmfg8t_kKxvswDg9frsw4bSwccYcPxLy0CukcmT_DcyuUYmoZc5srz8aVvGbMzFYlh1o9PZ8rDKNt7-D80vUDCm5A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1971740254</pqid></control><display><type>article</type><title>n-Heptane cool flame chemistry: Unraveling intermediate species measured in a stirred reactor and motored engine</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Zhandong ; Chen, Bingjie ; Moshammer, Kai ; Popolan-Vaida, Denisia M. ; Sioud, Salim ; Shankar, Vijai Shankar Bhavani ; Vuilleumier, David ; Tao, Tao ; Ruwe, Lena ; Bräuer, Eike ; Hansen, Nils ; Dagaut, Philippe ; Kohse-Höinghaus, Katharina ; Raji, Misjudeen A. ; Sarathy, S. Mani</creator><creatorcontrib>Wang, Zhandong ; Chen, Bingjie ; Moshammer, Kai ; Popolan-Vaida, Denisia M. ; Sioud, Salim ; Shankar, Vijai Shankar Bhavani ; Vuilleumier, David ; Tao, Tao ; Ruwe, Lena ; Bräuer, Eike ; Hansen, Nils ; Dagaut, Philippe ; Kohse-Höinghaus, Katharina ; Raji, Misjudeen A. ; Sarathy, S. Mani ; King Abdullah Univ. of Science and Technology (KAUST), Thuwal (Saudi Arabia) ; Sandia National Lab. (SNL-CA), Livermore, CA (United States) ; Bielefeld Univ. (Germany) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) ; Inst. of Engineering Sciences and Systems (CNRS-INSIS), Orléans (France) ; Tsinghua Univ., Beijing (China)</creatorcontrib><description>This work identifies classes of cool flame intermediates from n-heptane low-temperature oxidation in a jet-stirred reactor (JSR) and a motored cooperative fuel research (CFR) engine. The sampled species from the JSR oxidation of a mixture of n-heptane/O2/Ar (0.01/0.11/0.88) were analyzed using a synchrotron vacuum ultraviolet radiation photoionization (SVUV-PI) time-of-flight molecular-beam mass spectrometer (MBMS) and an atmospheric pressure chemical ionization (APCI) Orbitrap mass spectrometer (OTMS). The OTMS was also used to analyze the sampled species from a CFR engine exhaust. Approximately 70 intermediates were detected by the SVUV-PI-MBMS, and their assigned molecular formulae are in good agreement with those detected by the APCI-OTMS, which has ultra-high mass resolving power and provides an accurate elemental C/H/O composition of the intermediate species. Furthermore, the results show that the species formed during the partial oxidation of n-heptane in the CFR engine are very similar to those produced in an ideal reactor, i.e., a JSR. The products can be classified by species with molecular formulae of C7H14Ox (x = 0–5), C7H12Ox (x = 0–4), C7H10Ox (x = 0–4), CnH2n (n = 2–6), CnH2n−2 (n = 4–6), CnH2n+2O (n = 1–4), CnH2nO (n = 1–6), CnH2n−2O (n = 2–6), CnH2n−4O (n = 4–6), CnH2n+2O2 (n = 0–4, 7), CnH2nO2 (n = 1–6), CnH2n−2O2 (n = 2–6), CnH2n−4O2 (n = 4–6), and CnH2nO3 (n = 3–6). The identified intermediate species include alkenes, dienes, aldehyde/keto compounds, olefinic aldehyde/keto compounds, diones, cyclic ethers, peroxides, acids, and alcohols/ethers. Reaction pathways forming these intermediates are proposed and discussed herein. These experimental results are important in the development of more accurate kinetic models for n-heptane and longer-chain alkanes.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2017.09.003</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Alcohols ; Alkanes ; Alkenes ; APCI Orbitrap mass spectrometry ; Atmospheric models ; Auto-oxidation ; Chemical compounds ; Chemical Sciences ; Dienes ; Diketones ; Engineering Sciences ; Ethers ; Experiments ; Heptanes ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Ionization ; n-heptane ; Nuclear fuels ; or physical chemistry ; Oxidation ; Peroxides ; Photoionization ; Reactive fluid environment ; Resolution ; Species classification ; Synchrotron VUV photoionization mass spectrometry ; Temperature ; Theoretical and ; Ultraviolet radiation</subject><ispartof>Combustion and flame, 2018-01, Vol.187, p.199-216</ispartof><rights>2017 The Combustion Institute</rights><rights>Copyright Elsevier BV Jan 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-6ce9c16d500c39a74b42b1efadd0a450cd82b6b78eff5c41744d0d2e8520d4043</citedby><cites>FETCH-LOGICAL-c502t-6ce9c16d500c39a74b42b1efadd0a450cd82b6b78eff5c41744d0d2e8520d4043</cites><orcidid>0000-0003-1535-2319 ; 0000-0001-8125-6507 ; 0000-0002-3975-6206 ; 0000-0003-4825-3288 ; 0000000315352319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.combustflame.2017.09.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02015897$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1474083$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhandong</creatorcontrib><creatorcontrib>Chen, Bingjie</creatorcontrib><creatorcontrib>Moshammer, Kai</creatorcontrib><creatorcontrib>Popolan-Vaida, Denisia M.</creatorcontrib><creatorcontrib>Sioud, Salim</creatorcontrib><creatorcontrib>Shankar, Vijai Shankar Bhavani</creatorcontrib><creatorcontrib>Vuilleumier, David</creatorcontrib><creatorcontrib>Tao, Tao</creatorcontrib><creatorcontrib>Ruwe, Lena</creatorcontrib><creatorcontrib>Bräuer, Eike</creatorcontrib><creatorcontrib>Hansen, Nils</creatorcontrib><creatorcontrib>Dagaut, Philippe</creatorcontrib><creatorcontrib>Kohse-Höinghaus, Katharina</creatorcontrib><creatorcontrib>Raji, Misjudeen A.</creatorcontrib><creatorcontrib>Sarathy, S. Mani</creatorcontrib><creatorcontrib>King Abdullah Univ. of Science and Technology (KAUST), Thuwal (Saudi Arabia)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Bielefeld Univ. (Germany)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Inst. of Engineering Sciences and Systems (CNRS-INSIS), Orléans (France)</creatorcontrib><creatorcontrib>Tsinghua Univ., Beijing (China)</creatorcontrib><title>n-Heptane cool flame chemistry: Unraveling intermediate species measured in a stirred reactor and motored engine</title><title>Combustion and flame</title><description>This work identifies classes of cool flame intermediates from n-heptane low-temperature oxidation in a jet-stirred reactor (JSR) and a motored cooperative fuel research (CFR) engine. The sampled species from the JSR oxidation of a mixture of n-heptane/O2/Ar (0.01/0.11/0.88) were analyzed using a synchrotron vacuum ultraviolet radiation photoionization (SVUV-PI) time-of-flight molecular-beam mass spectrometer (MBMS) and an atmospheric pressure chemical ionization (APCI) Orbitrap mass spectrometer (OTMS). The OTMS was also used to analyze the sampled species from a CFR engine exhaust. Approximately 70 intermediates were detected by the SVUV-PI-MBMS, and their assigned molecular formulae are in good agreement with those detected by the APCI-OTMS, which has ultra-high mass resolving power and provides an accurate elemental C/H/O composition of the intermediate species. Furthermore, the results show that the species formed during the partial oxidation of n-heptane in the CFR engine are very similar to those produced in an ideal reactor, i.e., a JSR. The products can be classified by species with molecular formulae of C7H14Ox (x = 0–5), C7H12Ox (x = 0–4), C7H10Ox (x = 0–4), CnH2n (n = 2–6), CnH2n−2 (n = 4–6), CnH2n+2O (n = 1–4), CnH2nO (n = 1–6), CnH2n−2O (n = 2–6), CnH2n−4O (n = 4–6), CnH2n+2O2 (n = 0–4, 7), CnH2nO2 (n = 1–6), CnH2n−2O2 (n = 2–6), CnH2n−4O2 (n = 4–6), and CnH2nO3 (n = 3–6). The identified intermediate species include alkenes, dienes, aldehyde/keto compounds, olefinic aldehyde/keto compounds, diones, cyclic ethers, peroxides, acids, and alcohols/ethers. Reaction pathways forming these intermediates are proposed and discussed herein. These experimental results are important in the development of more accurate kinetic models for n-heptane and longer-chain alkanes.</description><subject>Alcohols</subject><subject>Alkanes</subject><subject>Alkenes</subject><subject>APCI Orbitrap mass spectrometry</subject><subject>Atmospheric models</subject><subject>Auto-oxidation</subject><subject>Chemical compounds</subject><subject>Chemical Sciences</subject><subject>Dienes</subject><subject>Diketones</subject><subject>Engineering Sciences</subject><subject>Ethers</subject><subject>Experiments</subject><subject>Heptanes</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Ionization</subject><subject>n-heptane</subject><subject>Nuclear fuels</subject><subject>or physical chemistry</subject><subject>Oxidation</subject><subject>Peroxides</subject><subject>Photoionization</subject><subject>Reactive fluid environment</subject><subject>Resolution</subject><subject>Species classification</subject><subject>Synchrotron VUV photoionization mass spectrometry</subject><subject>Temperature</subject><subject>Theoretical and</subject><subject>Ultraviolet radiation</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNUU1v3CAQRVUjZZvkP6D01IPdAeOv3KL0Yyut1EtzRhjGWVY2uMCulH9fXFdVjz0xzLx5PN4j5J5ByYA1H0-l9vNwjmmc1IwlB9aW0JcA1RuyY3XdFLzn7C3ZATAoOOvgmryL8QQAraiqHVlcscclKYdUez_R3zxUH3G2MYXXB_rsgrrgZN0LtS5hmNFYlZDGBbXFSGdU8RzQ5ClVNCYb1ktApZMPVDlDZ5-r3EP3Yh3ekqtRTRHv_pw35PnL5x9P--Lw_eu3p8dDoWvgqWg09po1pgbQVa9aMQg-MByVMaBEDdp0fGiGtsNxrLVgrRAGDMeu5mAEiOqG3G-8PmuSUduE-qi9c6iTZKIV0FUZ9GEDHdUkl2BnFV6lV1buHw9y7UF2tO769sIy9v2GXYL_ecaY5Mmfg8t_kKxvswDg9frsw4bSwccYcPxLy0CukcmT_DcyuUYmoZc5srz8aVvGbMzFYlh1o9PZ8rDKNt7-D80vUDCm5A</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Wang, Zhandong</creator><creator>Chen, Bingjie</creator><creator>Moshammer, Kai</creator><creator>Popolan-Vaida, Denisia M.</creator><creator>Sioud, Salim</creator><creator>Shankar, Vijai Shankar Bhavani</creator><creator>Vuilleumier, David</creator><creator>Tao, Tao</creator><creator>Ruwe, Lena</creator><creator>Bräuer, Eike</creator><creator>Hansen, Nils</creator><creator>Dagaut, Philippe</creator><creator>Kohse-Höinghaus, Katharina</creator><creator>Raji, Misjudeen A.</creator><creator>Sarathy, S. Mani</creator><general>Elsevier Inc</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1535-2319</orcidid><orcidid>https://orcid.org/0000-0001-8125-6507</orcidid><orcidid>https://orcid.org/0000-0002-3975-6206</orcidid><orcidid>https://orcid.org/0000-0003-4825-3288</orcidid><orcidid>https://orcid.org/0000000315352319</orcidid></search><sort><creationdate>20180101</creationdate><title>n-Heptane cool flame chemistry: Unraveling intermediate species measured in a stirred reactor and motored engine</title><author>Wang, Zhandong ; Chen, Bingjie ; Moshammer, Kai ; Popolan-Vaida, Denisia M. ; Sioud, Salim ; Shankar, Vijai Shankar Bhavani ; Vuilleumier, David ; Tao, Tao ; Ruwe, Lena ; Bräuer, Eike ; Hansen, Nils ; Dagaut, Philippe ; Kohse-Höinghaus, Katharina ; Raji, Misjudeen A. ; Sarathy, S. Mani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-6ce9c16d500c39a74b42b1efadd0a450cd82b6b78eff5c41744d0d2e8520d4043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alcohols</topic><topic>Alkanes</topic><topic>Alkenes</topic><topic>APCI Orbitrap mass spectrometry</topic><topic>Atmospheric models</topic><topic>Auto-oxidation</topic><topic>Chemical compounds</topic><topic>Chemical Sciences</topic><topic>Dienes</topic><topic>Diketones</topic><topic>Engineering Sciences</topic><topic>Ethers</topic><topic>Experiments</topic><topic>Heptanes</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Ionization</topic><topic>n-heptane</topic><topic>Nuclear fuels</topic><topic>or physical chemistry</topic><topic>Oxidation</topic><topic>Peroxides</topic><topic>Photoionization</topic><topic>Reactive fluid environment</topic><topic>Resolution</topic><topic>Species classification</topic><topic>Synchrotron VUV photoionization mass spectrometry</topic><topic>Temperature</topic><topic>Theoretical and</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhandong</creatorcontrib><creatorcontrib>Chen, Bingjie</creatorcontrib><creatorcontrib>Moshammer, Kai</creatorcontrib><creatorcontrib>Popolan-Vaida, Denisia M.</creatorcontrib><creatorcontrib>Sioud, Salim</creatorcontrib><creatorcontrib>Shankar, Vijai Shankar Bhavani</creatorcontrib><creatorcontrib>Vuilleumier, David</creatorcontrib><creatorcontrib>Tao, Tao</creatorcontrib><creatorcontrib>Ruwe, Lena</creatorcontrib><creatorcontrib>Bräuer, Eike</creatorcontrib><creatorcontrib>Hansen, Nils</creatorcontrib><creatorcontrib>Dagaut, Philippe</creatorcontrib><creatorcontrib>Kohse-Höinghaus, Katharina</creatorcontrib><creatorcontrib>Raji, Misjudeen A.</creatorcontrib><creatorcontrib>Sarathy, S. Mani</creatorcontrib><creatorcontrib>King Abdullah Univ. of Science and Technology (KAUST), Thuwal (Saudi Arabia)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Bielefeld Univ. (Germany)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Inst. of Engineering Sciences and Systems (CNRS-INSIS), Orléans (France)</creatorcontrib><creatorcontrib>Tsinghua Univ., Beijing (China)</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhandong</au><au>Chen, Bingjie</au><au>Moshammer, Kai</au><au>Popolan-Vaida, Denisia M.</au><au>Sioud, Salim</au><au>Shankar, Vijai Shankar Bhavani</au><au>Vuilleumier, David</au><au>Tao, Tao</au><au>Ruwe, Lena</au><au>Bräuer, Eike</au><au>Hansen, Nils</au><au>Dagaut, Philippe</au><au>Kohse-Höinghaus, Katharina</au><au>Raji, Misjudeen A.</au><au>Sarathy, S. Mani</au><aucorp>King Abdullah Univ. of Science and Technology (KAUST), Thuwal (Saudi Arabia)</aucorp><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><aucorp>Bielefeld Univ. (Germany)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Inst. of Engineering Sciences and Systems (CNRS-INSIS), Orléans (France)</aucorp><aucorp>Tsinghua Univ., Beijing (China)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>n-Heptane cool flame chemistry: Unraveling intermediate species measured in a stirred reactor and motored engine</atitle><jtitle>Combustion and flame</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>187</volume><spage>199</spage><epage>216</epage><pages>199-216</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>This work identifies classes of cool flame intermediates from n-heptane low-temperature oxidation in a jet-stirred reactor (JSR) and a motored cooperative fuel research (CFR) engine. The sampled species from the JSR oxidation of a mixture of n-heptane/O2/Ar (0.01/0.11/0.88) were analyzed using a synchrotron vacuum ultraviolet radiation photoionization (SVUV-PI) time-of-flight molecular-beam mass spectrometer (MBMS) and an atmospheric pressure chemical ionization (APCI) Orbitrap mass spectrometer (OTMS). The OTMS was also used to analyze the sampled species from a CFR engine exhaust. Approximately 70 intermediates were detected by the SVUV-PI-MBMS, and their assigned molecular formulae are in good agreement with those detected by the APCI-OTMS, which has ultra-high mass resolving power and provides an accurate elemental C/H/O composition of the intermediate species. Furthermore, the results show that the species formed during the partial oxidation of n-heptane in the CFR engine are very similar to those produced in an ideal reactor, i.e., a JSR. The products can be classified by species with molecular formulae of C7H14Ox (x = 0–5), C7H12Ox (x = 0–4), C7H10Ox (x = 0–4), CnH2n (n = 2–6), CnH2n−2 (n = 4–6), CnH2n+2O (n = 1–4), CnH2nO (n = 1–6), CnH2n−2O (n = 2–6), CnH2n−4O (n = 4–6), CnH2n+2O2 (n = 0–4, 7), CnH2nO2 (n = 1–6), CnH2n−2O2 (n = 2–6), CnH2n−4O2 (n = 4–6), and CnH2nO3 (n = 3–6). The identified intermediate species include alkenes, dienes, aldehyde/keto compounds, olefinic aldehyde/keto compounds, diones, cyclic ethers, peroxides, acids, and alcohols/ethers. Reaction pathways forming these intermediates are proposed and discussed herein. These experimental results are important in the development of more accurate kinetic models for n-heptane and longer-chain alkanes.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2017.09.003</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1535-2319</orcidid><orcidid>https://orcid.org/0000-0001-8125-6507</orcidid><orcidid>https://orcid.org/0000-0002-3975-6206</orcidid><orcidid>https://orcid.org/0000-0003-4825-3288</orcidid><orcidid>https://orcid.org/0000000315352319</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2018-01, Vol.187, p.199-216
issn 0010-2180
1556-2921
language eng
recordid cdi_osti_scitechconnect_1474083
source Access via ScienceDirect (Elsevier)
subjects Alcohols
Alkanes
Alkenes
APCI Orbitrap mass spectrometry
Atmospheric models
Auto-oxidation
Chemical compounds
Chemical Sciences
Dienes
Diketones
Engineering Sciences
Ethers
Experiments
Heptanes
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Ionization
n-heptane
Nuclear fuels
or physical chemistry
Oxidation
Peroxides
Photoionization
Reactive fluid environment
Resolution
Species classification
Synchrotron VUV photoionization mass spectrometry
Temperature
Theoretical and
Ultraviolet radiation
title n-Heptane cool flame chemistry: Unraveling intermediate species measured in a stirred reactor and motored engine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A25%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=n-Heptane%20cool%20flame%20chemistry:%20Unraveling%20intermediate%20species%20measured%20in%20a%20stirred%20reactor%20and%20motored%20engine&rft.jtitle=Combustion%20and%20flame&rft.au=Wang,%20Zhandong&rft.aucorp=King%20Abdullah%20Univ.%20of%20Science%20and%20Technology%20(KAUST),%20Thuwal%20(Saudi%20Arabia)&rft.date=2018-01-01&rft.volume=187&rft.spage=199&rft.epage=216&rft.pages=199-216&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2017.09.003&rft_dat=%3Cproquest_osti_%3E1971740254%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1971740254&rft_id=info:pmid/&rft_els_id=S0010218017303334&rfr_iscdi=true