Universality and Stability Phase Diagram of Two-Dimensional Brittle Fracture

The two-dimensional oscillatory crack instability, experimentally observed in a class of brittle materials under strongly dynamic conditions, has been recently reproduced by a nonlinear phase-field fracture theory. Here, we highlight the universal character of this instability by showing that it is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2018-09, Vol.121 (13), p.134301-134301, Article 134301
Hauptverfasser: Lubomirsky, Yuri, Chen, Chih-Hung, Karma, Alain, Bouchbinder, Eran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The two-dimensional oscillatory crack instability, experimentally observed in a class of brittle materials under strongly dynamic conditions, has been recently reproduced by a nonlinear phase-field fracture theory. Here, we highlight the universal character of this instability by showing that it is present in materials exhibiting widely different near crack tip elastic nonlinearity, and by demonstrating that the oscillations wavelength follows a universal master curve in terms of dissipation-related and nonlinear elastic intrinsic length scales. Moreover, we show that upon increasing the driving force for fracture, a high-velocity tip-splitting instability emerges, as experimentally demonstrated. The analysis culminates in a comprehensive stability phase diagram of two-dimensional brittle fracture, whose salient properties and topology are independent of the form of near tip nonlinearity.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.121.134301