Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out

High sensitivity, fast response time and strong light absorption are the most important metrics for infrared sensing and imaging. The trade-off between these characteristics remains the primary challenge in bolometry. Graphene with its unique combination of a record small electronic heat capacity an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2018-09, Vol.13 (9), p.797-801
Hauptverfasser: Efetov, Dmitri K., Shiue, Ren-Jye, Gao, Yuanda, Skinner, Brian, Walsh, Evan D., Choi, Hyeongrak, Zheng, Jiabao, Tan, Cheng, Grosso, Gabriele, Peng, Cheng, Hone, James, Fong, Kin Chung, Englund, Dirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 801
container_issue 9
container_start_page 797
container_title Nature nanotechnology
container_volume 13
creator Efetov, Dmitri K.
Shiue, Ren-Jye
Gao, Yuanda
Skinner, Brian
Walsh, Evan D.
Choi, Hyeongrak
Zheng, Jiabao
Tan, Cheng
Grosso, Gabriele
Peng, Cheng
Hone, James
Fong, Kin Chung
Englund, Dirk
description High sensitivity, fast response time and strong light absorption are the most important metrics for infrared sensing and imaging. The trade-off between these characteristics remains the primary challenge in bolometry. Graphene with its unique combination of a record small electronic heat capacity and a weak electron–phonon coupling has emerged as a sensitive bolometric medium that allows for high intrinsic bandwidths 1 – 3 . Moreover, the material’s light absorption can be enhanced to near unity by integration into photonic structures. Here, we introduce an integrated hot-electron bolometer based on Johnson noise readout of electrons in ultra-clean hexagonal-boron-nitride-encapsulated graphene, which is critically coupled to incident radiation through a photonic nanocavity with Q  = 900. The device operates at telecom wavelengths and shows an enhanced bolometric response at charge neutrality. At 5 K, we obtain a noise equivalent power of about 10 pW Hz – 1/2 , a record fast thermal relaxation time,
doi_str_mv 10.1038/s41565-018-0169-0
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1470428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2100364904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-41dce59f30d99a9303204707996dce0ec62203de80b5c49738730bcad48871dd3</originalsourceid><addsrcrecordid>eNp1kUtrFjEUhoMo9qI_wI0E3XQzenKZmWQpxXqh4EZXLkK-5HydlJnkM8lU--9NmVpBcBESOM_7hMNLyAsGbxgI9bZI1g99B0y1M-gOHpFjNkrVCaH7xw9vNR6Rk1KuAXquuXxKjrhWmgMbj8n3C1sqrRPmxc4042x_2RpSpCFSZ29Cve1cWg8zenqV7WHCiHSX5rRgxVzoz1AnaunnNMXSQjGFgs1ifZfW-ow82du54PP7-5R8u3j_9fxjd_nlw6fzd5edE1rXTjLvsNd7AV5rqwUIDnKEUeuhDQDdwDkIjwp2vZN6bPsI2DnrpVIj816cklebN5UaTHGhoptcihFdNaypJFcNOtugQ04_VizVLKE4nGcbMa3FcOil7rnkrKGv_0Gv05pjW8FwBiAGqUE2im2Uy6mUjHtzyGGx-dYwMHf1mK0e0-oxd_UYaJmX9-Z1t6B_SPzpowF8A0obxSvMf7_-v_U3l2SZPQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100364904</pqid></control><display><type>article</type><title>Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out</title><source>SpringerLink Journals</source><source>Nature</source><creator>Efetov, Dmitri K. ; Shiue, Ren-Jye ; Gao, Yuanda ; Skinner, Brian ; Walsh, Evan D. ; Choi, Hyeongrak ; Zheng, Jiabao ; Tan, Cheng ; Grosso, Gabriele ; Peng, Cheng ; Hone, James ; Fong, Kin Chung ; Englund, Dirk</creator><creatorcontrib>Efetov, Dmitri K. ; Shiue, Ren-Jye ; Gao, Yuanda ; Skinner, Brian ; Walsh, Evan D. ; Choi, Hyeongrak ; Zheng, Jiabao ; Tan, Cheng ; Grosso, Gabriele ; Peng, Cheng ; Hone, James ; Fong, Kin Chung ; Englund, Dirk ; Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</creatorcontrib><description>High sensitivity, fast response time and strong light absorption are the most important metrics for infrared sensing and imaging. The trade-off between these characteristics remains the primary challenge in bolometry. Graphene with its unique combination of a record small electronic heat capacity and a weak electron–phonon coupling has emerged as a sensitive bolometric medium that allows for high intrinsic bandwidths 1 – 3 . Moreover, the material’s light absorption can be enhanced to near unity by integration into photonic structures. Here, we introduce an integrated hot-electron bolometer based on Johnson noise readout of electrons in ultra-clean hexagonal-boron-nitride-encapsulated graphene, which is critically coupled to incident radiation through a photonic nanocavity with Q  = 900. The device operates at telecom wavelengths and shows an enhanced bolometric response at charge neutrality. At 5 K, we obtain a noise equivalent power of about 10 pW Hz – 1/2 , a record fast thermal relaxation time, &lt;35 ps, and an improved light absorption. However the device can operate even above 300 K with reduced sensitivity. We work out the performance mechanisms and limits of the graphene bolometer and give important insights towards the potential development of practical applications. A graphene–hBN heterostructure integrated onto a photonic crystal cavity shows enhanced bolometric response owing to improved light absorption and ultrafast thermal relaxation time.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-018-0169-0</identifier><identifier>PMID: 29892017</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/166 ; 639/301 ; 639/4077 ; 639/624 ; 639/925 ; Absorption ; Bolometers ; Boron ; Boron nitride ; Chemistry and Materials Science ; Electromagnetic absorption ; Graphene ; Incident radiation ; Infrared imaging ; Letter ; Light effects ; Materials Science ; Nanotechnology ; Nanotechnology and Microengineering ; Noise ; Noise sensitivity ; Photonics ; Relaxation time ; Response time ; solar (photovoltaic), solid state lighting, photosynthesis (natural and artificial), charge transport, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) ; Thermal noise ; Thermal relaxation ; Wavelengths</subject><ispartof>Nature nanotechnology, 2018-09, Vol.13 (9), p.797-801</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Sep 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-41dce59f30d99a9303204707996dce0ec62203de80b5c49738730bcad48871dd3</citedby><cites>FETCH-LOGICAL-c399t-41dce59f30d99a9303204707996dce0ec62203de80b5c49738730bcad48871dd3</cites><orcidid>0000-0002-6558-1083 ; 0000-0001-5862-0462 ; 0000-0002-1043-3489 ; 0000000265581083 ; 0000000158620462 ; 0000000210433489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-018-0169-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-018-0169-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29892017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1470428$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Efetov, Dmitri K.</creatorcontrib><creatorcontrib>Shiue, Ren-Jye</creatorcontrib><creatorcontrib>Gao, Yuanda</creatorcontrib><creatorcontrib>Skinner, Brian</creatorcontrib><creatorcontrib>Walsh, Evan D.</creatorcontrib><creatorcontrib>Choi, Hyeongrak</creatorcontrib><creatorcontrib>Zheng, Jiabao</creatorcontrib><creatorcontrib>Tan, Cheng</creatorcontrib><creatorcontrib>Grosso, Gabriele</creatorcontrib><creatorcontrib>Peng, Cheng</creatorcontrib><creatorcontrib>Hone, James</creatorcontrib><creatorcontrib>Fong, Kin Chung</creatorcontrib><creatorcontrib>Englund, Dirk</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</creatorcontrib><title>Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>High sensitivity, fast response time and strong light absorption are the most important metrics for infrared sensing and imaging. The trade-off between these characteristics remains the primary challenge in bolometry. Graphene with its unique combination of a record small electronic heat capacity and a weak electron–phonon coupling has emerged as a sensitive bolometric medium that allows for high intrinsic bandwidths 1 – 3 . Moreover, the material’s light absorption can be enhanced to near unity by integration into photonic structures. Here, we introduce an integrated hot-electron bolometer based on Johnson noise readout of electrons in ultra-clean hexagonal-boron-nitride-encapsulated graphene, which is critically coupled to incident radiation through a photonic nanocavity with Q  = 900. The device operates at telecom wavelengths and shows an enhanced bolometric response at charge neutrality. At 5 K, we obtain a noise equivalent power of about 10 pW Hz – 1/2 , a record fast thermal relaxation time, &lt;35 ps, and an improved light absorption. However the device can operate even above 300 K with reduced sensitivity. We work out the performance mechanisms and limits of the graphene bolometer and give important insights towards the potential development of practical applications. A graphene–hBN heterostructure integrated onto a photonic crystal cavity shows enhanced bolometric response owing to improved light absorption and ultrafast thermal relaxation time.</description><subject>142/126</subject><subject>639/166</subject><subject>639/301</subject><subject>639/4077</subject><subject>639/624</subject><subject>639/925</subject><subject>Absorption</subject><subject>Bolometers</subject><subject>Boron</subject><subject>Boron nitride</subject><subject>Chemistry and Materials Science</subject><subject>Electromagnetic absorption</subject><subject>Graphene</subject><subject>Incident radiation</subject><subject>Infrared imaging</subject><subject>Letter</subject><subject>Light effects</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Noise</subject><subject>Noise sensitivity</subject><subject>Photonics</subject><subject>Relaxation time</subject><subject>Response time</subject><subject>solar (photovoltaic), solid state lighting, photosynthesis (natural and artificial), charge transport, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><subject>Thermal noise</subject><subject>Thermal relaxation</subject><subject>Wavelengths</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtrFjEUhoMo9qI_wI0E3XQzenKZmWQpxXqh4EZXLkK-5HydlJnkM8lU--9NmVpBcBESOM_7hMNLyAsGbxgI9bZI1g99B0y1M-gOHpFjNkrVCaH7xw9vNR6Rk1KuAXquuXxKjrhWmgMbj8n3C1sqrRPmxc4042x_2RpSpCFSZ29Cve1cWg8zenqV7WHCiHSX5rRgxVzoz1AnaunnNMXSQjGFgs1ifZfW-ow82du54PP7-5R8u3j_9fxjd_nlw6fzd5edE1rXTjLvsNd7AV5rqwUIDnKEUeuhDQDdwDkIjwp2vZN6bPsI2DnrpVIj816cklebN5UaTHGhoptcihFdNaypJFcNOtugQ04_VizVLKE4nGcbMa3FcOil7rnkrKGv_0Gv05pjW8FwBiAGqUE2im2Uy6mUjHtzyGGx-dYwMHf1mK0e0-oxd_UYaJmX9-Z1t6B_SPzpowF8A0obxSvMf7_-v_U3l2SZPQ</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Efetov, Dmitri K.</creator><creator>Shiue, Ren-Jye</creator><creator>Gao, Yuanda</creator><creator>Skinner, Brian</creator><creator>Walsh, Evan D.</creator><creator>Choi, Hyeongrak</creator><creator>Zheng, Jiabao</creator><creator>Tan, Cheng</creator><creator>Grosso, Gabriele</creator><creator>Peng, Cheng</creator><creator>Hone, James</creator><creator>Fong, Kin Chung</creator><creator>Englund, Dirk</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6558-1083</orcidid><orcidid>https://orcid.org/0000-0001-5862-0462</orcidid><orcidid>https://orcid.org/0000-0002-1043-3489</orcidid><orcidid>https://orcid.org/0000000265581083</orcidid><orcidid>https://orcid.org/0000000158620462</orcidid><orcidid>https://orcid.org/0000000210433489</orcidid></search><sort><creationdate>20180901</creationdate><title>Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out</title><author>Efetov, Dmitri K. ; Shiue, Ren-Jye ; Gao, Yuanda ; Skinner, Brian ; Walsh, Evan D. ; Choi, Hyeongrak ; Zheng, Jiabao ; Tan, Cheng ; Grosso, Gabriele ; Peng, Cheng ; Hone, James ; Fong, Kin Chung ; Englund, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-41dce59f30d99a9303204707996dce0ec62203de80b5c49738730bcad48871dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>142/126</topic><topic>639/166</topic><topic>639/301</topic><topic>639/4077</topic><topic>639/624</topic><topic>639/925</topic><topic>Absorption</topic><topic>Bolometers</topic><topic>Boron</topic><topic>Boron nitride</topic><topic>Chemistry and Materials Science</topic><topic>Electromagnetic absorption</topic><topic>Graphene</topic><topic>Incident radiation</topic><topic>Infrared imaging</topic><topic>Letter</topic><topic>Light effects</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Noise</topic><topic>Noise sensitivity</topic><topic>Photonics</topic><topic>Relaxation time</topic><topic>Response time</topic><topic>solar (photovoltaic), solid state lighting, photosynthesis (natural and artificial), charge transport, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</topic><topic>Thermal noise</topic><topic>Thermal relaxation</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Efetov, Dmitri K.</creatorcontrib><creatorcontrib>Shiue, Ren-Jye</creatorcontrib><creatorcontrib>Gao, Yuanda</creatorcontrib><creatorcontrib>Skinner, Brian</creatorcontrib><creatorcontrib>Walsh, Evan D.</creatorcontrib><creatorcontrib>Choi, Hyeongrak</creatorcontrib><creatorcontrib>Zheng, Jiabao</creatorcontrib><creatorcontrib>Tan, Cheng</creatorcontrib><creatorcontrib>Grosso, Gabriele</creatorcontrib><creatorcontrib>Peng, Cheng</creatorcontrib><creatorcontrib>Hone, James</creatorcontrib><creatorcontrib>Fong, Kin Chung</creatorcontrib><creatorcontrib>Englund, Dirk</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Efetov, Dmitri K.</au><au>Shiue, Ren-Jye</au><au>Gao, Yuanda</au><au>Skinner, Brian</au><au>Walsh, Evan D.</au><au>Choi, Hyeongrak</au><au>Zheng, Jiabao</au><au>Tan, Cheng</au><au>Grosso, Gabriele</au><au>Peng, Cheng</au><au>Hone, James</au><au>Fong, Kin Chung</au><au>Englund, Dirk</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>13</volume><issue>9</issue><spage>797</spage><epage>801</epage><pages>797-801</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>High sensitivity, fast response time and strong light absorption are the most important metrics for infrared sensing and imaging. The trade-off between these characteristics remains the primary challenge in bolometry. Graphene with its unique combination of a record small electronic heat capacity and a weak electron–phonon coupling has emerged as a sensitive bolometric medium that allows for high intrinsic bandwidths 1 – 3 . Moreover, the material’s light absorption can be enhanced to near unity by integration into photonic structures. Here, we introduce an integrated hot-electron bolometer based on Johnson noise readout of electrons in ultra-clean hexagonal-boron-nitride-encapsulated graphene, which is critically coupled to incident radiation through a photonic nanocavity with Q  = 900. The device operates at telecom wavelengths and shows an enhanced bolometric response at charge neutrality. At 5 K, we obtain a noise equivalent power of about 10 pW Hz – 1/2 , a record fast thermal relaxation time, &lt;35 ps, and an improved light absorption. However the device can operate even above 300 K with reduced sensitivity. We work out the performance mechanisms and limits of the graphene bolometer and give important insights towards the potential development of practical applications. A graphene–hBN heterostructure integrated onto a photonic crystal cavity shows enhanced bolometric response owing to improved light absorption and ultrafast thermal relaxation time.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29892017</pmid><doi>10.1038/s41565-018-0169-0</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6558-1083</orcidid><orcidid>https://orcid.org/0000-0001-5862-0462</orcidid><orcidid>https://orcid.org/0000-0002-1043-3489</orcidid><orcidid>https://orcid.org/0000000265581083</orcidid><orcidid>https://orcid.org/0000000158620462</orcidid><orcidid>https://orcid.org/0000000210433489</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2018-09, Vol.13 (9), p.797-801
issn 1748-3387
1748-3395
language eng
recordid cdi_osti_scitechconnect_1470428
source SpringerLink Journals; Nature
subjects 142/126
639/166
639/301
639/4077
639/624
639/925
Absorption
Bolometers
Boron
Boron nitride
Chemistry and Materials Science
Electromagnetic absorption
Graphene
Incident radiation
Infrared imaging
Letter
Light effects
Materials Science
Nanotechnology
Nanotechnology and Microengineering
Noise
Noise sensitivity
Photonics
Relaxation time
Response time
solar (photovoltaic), solid state lighting, photosynthesis (natural and artificial), charge transport, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)
Thermal noise
Thermal relaxation
Wavelengths
title Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20thermal%20relaxation%20in%20cavity-coupled%20graphene%20bolometers%20with%20a%20Johnson%20noise%20read-out&rft.jtitle=Nature%20nanotechnology&rft.au=Efetov,%20Dmitri%20K.&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Excitonics%20(CE)&rft.date=2018-09-01&rft.volume=13&rft.issue=9&rft.spage=797&rft.epage=801&rft.pages=797-801&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-018-0169-0&rft_dat=%3Cproquest_osti_%3E2100364904%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2100364904&rft_id=info:pmid/29892017&rfr_iscdi=true