Pore-scale modelling of Ostwald ripening

In a saturated solution with dispersed clusters of a second phase, the mechanism by which the larger clusters grow at the expense of the smaller ones is called Ostwald ripening. Although the mechanism is well understood in situations where multiple clusters of gas exist in a liquid solution, evoluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2018-01, Vol.835, p.363-392
Hauptverfasser: de Chalendar, Jacques A., Garing, Charlotte, Benson, Sally M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 392
container_issue
container_start_page 363
container_title Journal of fluid mechanics
container_volume 835
creator de Chalendar, Jacques A.
Garing, Charlotte
Benson, Sally M.
description In a saturated solution with dispersed clusters of a second phase, the mechanism by which the larger clusters grow at the expense of the smaller ones is called Ostwald ripening. Although the mechanism is well understood in situations where multiple clusters of gas exist in a liquid solution, evolution is much more complicated to predict when the two phases interact with a solid matrix, since the solid plays a significant role in determining the shape of the interface. In this paper, we study capillary dominated regimes in porous media where the driving force is inter-cluster diffusion. By decomposing the Ostwald ripening mechanism into two processes that operate on different time scales – the diffusion of solute gas in the liquid and the readjustment of the shape of the gas–liquid interface to accommodate a change in mass – we develop a sequential algorithm to solve for the evolution of systems with multiple gas ganglia. In the absence of a solid matrix, thermodynamic equilibrium is reached when all of the gas phase aggregates to form one large bubble. In porous media on the other hand, we find that ripening can lead to equilibrium situations with multiple disconnected ganglia, and that evolution is highly dependent on initial conditions and the structure of the solid matrix. The fundamental difference between the two cases is in the relationship between mass and capillary pressure.
doi_str_mv 10.1017/jfm.2017.720
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1470165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2017_720</cupid><sourcerecordid>1973762830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-b325859da23da6079b8bf1e8ee1361c83ed997729577f22746e366c61d55e3543</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EEqWw8QMiWBhI8NmxHY-o4kuqVAaYLce5lFRJXOxUiH-PqzIwMN3p9LyvTg8hl0ALoKDuNu1QsLQUitEjMoNS6lzJUhyTGaWM5QCMnpKzGDeUAqdazcjNqw-YR2d7zAbfYN934zrzbbaK05ftmyx0WxzT7ZyctLaPePE75-T98eFt8ZwvV08vi_tl7kquprzmTFRCN5bxxkqqdF3VLWCFCFyCqzg2WivFtFCqZUyVErmUTkIjBHJR8jm5OvT6OHUmum5C9-H8OKKbDJSKghQJuj5A2-A_dxgns_G7MKa_DGjFlWQVp4m6PVAu-BgDtmYbusGGbwPU7IWZJMzshZkkLOHFL26HOnTNGv-0_hf4AfVCag8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973762830</pqid></control><display><type>article</type><title>Pore-scale modelling of Ostwald ripening</title><source>Cambridge University Press Journals Complete</source><creator>de Chalendar, Jacques A. ; Garing, Charlotte ; Benson, Sally M.</creator><creatorcontrib>de Chalendar, Jacques A. ; Garing, Charlotte ; Benson, Sally M. ; Energy Frontier Research Centers (EFRC) (United States). Center for Nanoscale Control of Geologic CO2 (NCGC)</creatorcontrib><description>In a saturated solution with dispersed clusters of a second phase, the mechanism by which the larger clusters grow at the expense of the smaller ones is called Ostwald ripening. Although the mechanism is well understood in situations where multiple clusters of gas exist in a liquid solution, evolution is much more complicated to predict when the two phases interact with a solid matrix, since the solid plays a significant role in determining the shape of the interface. In this paper, we study capillary dominated regimes in porous media where the driving force is inter-cluster diffusion. By decomposing the Ostwald ripening mechanism into two processes that operate on different time scales – the diffusion of solute gas in the liquid and the readjustment of the shape of the gas–liquid interface to accommodate a change in mass – we develop a sequential algorithm to solve for the evolution of systems with multiple gas ganglia. In the absence of a solid matrix, thermodynamic equilibrium is reached when all of the gas phase aggregates to form one large bubble. In porous media on the other hand, we find that ripening can lead to equilibrium situations with multiple disconnected ganglia, and that evolution is highly dependent on initial conditions and the structure of the solid matrix. The fundamental difference between the two cases is in the relationship between mass and capillary pressure.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2017.720</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>bio-inspired, mechanical behavior, carbon sequestration ; Capillary pressure ; Clusters ; Diffusion ; Dye dispersion ; Evolutionary algorithms ; Fluids ; Ganglia ; Initial conditions ; JFM Papers ; Mathematical models ; Modelling ; Ostwald ripening ; Porous media ; Scale models ; Shape ; Solutes ; Stone ; Thermodynamic equilibrium ; Visualization</subject><ispartof>Journal of fluid mechanics, 2018-01, Vol.835, p.363-392</ispartof><rights>2017 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-b325859da23da6079b8bf1e8ee1361c83ed997729577f22746e366c61d55e3543</citedby><cites>FETCH-LOGICAL-c437t-b325859da23da6079b8bf1e8ee1361c83ed997729577f22746e366c61d55e3543</cites><orcidid>0000-0002-3586-199X ; 0000-0001-8767-7847 ; 0000-0002-3733-4296 ; 0000000237334296 ; 000000023586199X ; 0000000187677847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112017007200/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27901,27902,55603</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1470165$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>de Chalendar, Jacques A.</creatorcontrib><creatorcontrib>Garing, Charlotte</creatorcontrib><creatorcontrib>Benson, Sally M.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Nanoscale Control of Geologic CO2 (NCGC)</creatorcontrib><title>Pore-scale modelling of Ostwald ripening</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>In a saturated solution with dispersed clusters of a second phase, the mechanism by which the larger clusters grow at the expense of the smaller ones is called Ostwald ripening. Although the mechanism is well understood in situations where multiple clusters of gas exist in a liquid solution, evolution is much more complicated to predict when the two phases interact with a solid matrix, since the solid plays a significant role in determining the shape of the interface. In this paper, we study capillary dominated regimes in porous media where the driving force is inter-cluster diffusion. By decomposing the Ostwald ripening mechanism into two processes that operate on different time scales – the diffusion of solute gas in the liquid and the readjustment of the shape of the gas–liquid interface to accommodate a change in mass – we develop a sequential algorithm to solve for the evolution of systems with multiple gas ganglia. In the absence of a solid matrix, thermodynamic equilibrium is reached when all of the gas phase aggregates to form one large bubble. In porous media on the other hand, we find that ripening can lead to equilibrium situations with multiple disconnected ganglia, and that evolution is highly dependent on initial conditions and the structure of the solid matrix. The fundamental difference between the two cases is in the relationship between mass and capillary pressure.</description><subject>bio-inspired, mechanical behavior, carbon sequestration</subject><subject>Capillary pressure</subject><subject>Clusters</subject><subject>Diffusion</subject><subject>Dye dispersion</subject><subject>Evolutionary algorithms</subject><subject>Fluids</subject><subject>Ganglia</subject><subject>Initial conditions</subject><subject>JFM Papers</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Ostwald ripening</subject><subject>Porous media</subject><subject>Scale models</subject><subject>Shape</subject><subject>Solutes</subject><subject>Stone</subject><subject>Thermodynamic equilibrium</subject><subject>Visualization</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkD1PwzAQhi0EEqWw8QMiWBhI8NmxHY-o4kuqVAaYLce5lFRJXOxUiH-PqzIwMN3p9LyvTg8hl0ALoKDuNu1QsLQUitEjMoNS6lzJUhyTGaWM5QCMnpKzGDeUAqdazcjNqw-YR2d7zAbfYN934zrzbbaK05ftmyx0WxzT7ZyctLaPePE75-T98eFt8ZwvV08vi_tl7kquprzmTFRCN5bxxkqqdF3VLWCFCFyCqzg2WivFtFCqZUyVErmUTkIjBHJR8jm5OvT6OHUmum5C9-H8OKKbDJSKghQJuj5A2-A_dxgns_G7MKa_DGjFlWQVp4m6PVAu-BgDtmYbusGGbwPU7IWZJMzshZkkLOHFL26HOnTNGv-0_hf4AfVCag8</recordid><startdate>20180125</startdate><enddate>20180125</enddate><creator>de Chalendar, Jacques A.</creator><creator>Garing, Charlotte</creator><creator>Benson, Sally M.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3586-199X</orcidid><orcidid>https://orcid.org/0000-0001-8767-7847</orcidid><orcidid>https://orcid.org/0000-0002-3733-4296</orcidid><orcidid>https://orcid.org/0000000237334296</orcidid><orcidid>https://orcid.org/000000023586199X</orcidid><orcidid>https://orcid.org/0000000187677847</orcidid></search><sort><creationdate>20180125</creationdate><title>Pore-scale modelling of Ostwald ripening</title><author>de Chalendar, Jacques A. ; Garing, Charlotte ; Benson, Sally M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-b325859da23da6079b8bf1e8ee1361c83ed997729577f22746e366c61d55e3543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>bio-inspired, mechanical behavior, carbon sequestration</topic><topic>Capillary pressure</topic><topic>Clusters</topic><topic>Diffusion</topic><topic>Dye dispersion</topic><topic>Evolutionary algorithms</topic><topic>Fluids</topic><topic>Ganglia</topic><topic>Initial conditions</topic><topic>JFM Papers</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Ostwald ripening</topic><topic>Porous media</topic><topic>Scale models</topic><topic>Shape</topic><topic>Solutes</topic><topic>Stone</topic><topic>Thermodynamic equilibrium</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Chalendar, Jacques A.</creatorcontrib><creatorcontrib>Garing, Charlotte</creatorcontrib><creatorcontrib>Benson, Sally M.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Nanoscale Control of Geologic CO2 (NCGC)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>OSTI.GOV</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Chalendar, Jacques A.</au><au>Garing, Charlotte</au><au>Benson, Sally M.</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Nanoscale Control of Geologic CO2 (NCGC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pore-scale modelling of Ostwald ripening</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2018-01-25</date><risdate>2018</risdate><volume>835</volume><spage>363</spage><epage>392</epage><pages>363-392</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>In a saturated solution with dispersed clusters of a second phase, the mechanism by which the larger clusters grow at the expense of the smaller ones is called Ostwald ripening. Although the mechanism is well understood in situations where multiple clusters of gas exist in a liquid solution, evolution is much more complicated to predict when the two phases interact with a solid matrix, since the solid plays a significant role in determining the shape of the interface. In this paper, we study capillary dominated regimes in porous media where the driving force is inter-cluster diffusion. By decomposing the Ostwald ripening mechanism into two processes that operate on different time scales – the diffusion of solute gas in the liquid and the readjustment of the shape of the gas–liquid interface to accommodate a change in mass – we develop a sequential algorithm to solve for the evolution of systems with multiple gas ganglia. In the absence of a solid matrix, thermodynamic equilibrium is reached when all of the gas phase aggregates to form one large bubble. In porous media on the other hand, we find that ripening can lead to equilibrium situations with multiple disconnected ganglia, and that evolution is highly dependent on initial conditions and the structure of the solid matrix. The fundamental difference between the two cases is in the relationship between mass and capillary pressure.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2017.720</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-3586-199X</orcidid><orcidid>https://orcid.org/0000-0001-8767-7847</orcidid><orcidid>https://orcid.org/0000-0002-3733-4296</orcidid><orcidid>https://orcid.org/0000000237334296</orcidid><orcidid>https://orcid.org/000000023586199X</orcidid><orcidid>https://orcid.org/0000000187677847</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2018-01, Vol.835, p.363-392
issn 0022-1120
1469-7645
language eng
recordid cdi_osti_scitechconnect_1470165
source Cambridge University Press Journals Complete
subjects bio-inspired, mechanical behavior, carbon sequestration
Capillary pressure
Clusters
Diffusion
Dye dispersion
Evolutionary algorithms
Fluids
Ganglia
Initial conditions
JFM Papers
Mathematical models
Modelling
Ostwald ripening
Porous media
Scale models
Shape
Solutes
Stone
Thermodynamic equilibrium
Visualization
title Pore-scale modelling of Ostwald ripening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T08%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pore-scale%20modelling%20of%20Ostwald%20ripening&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=de%20Chalendar,%20Jacques%20A.&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Nanoscale%20Control%20of%20Geologic%20CO2%20(NCGC)&rft.date=2018-01-25&rft.volume=835&rft.spage=363&rft.epage=392&rft.pages=363-392&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2017.720&rft_dat=%3Cproquest_osti_%3E1973762830%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973762830&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2017_720&rfr_iscdi=true