First-Principles Simulation of the (Li–Ni–Vacancy)O Phase Diagram and Its Relevance for the Surface Phases in Ni-Rich Li-Ion Cathode Materials

Despite several reports on the surface phase transformations from a layered to a disordered spinel and a rock-salt structure at the surface of the Ni-rich cathodes, the precise structures and compositions of these surface phases are unknown. The phenomenon, in itself, is complex and involves the par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2017-09, Vol.29 (18), p.7840-7851
Hauptverfasser: Das, Hena, Urban, Alexander, Huang, Wenxuan, Ceder, Gerbrand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7851
container_issue 18
container_start_page 7840
container_title Chemistry of materials
container_volume 29
creator Das, Hena
Urban, Alexander
Huang, Wenxuan
Ceder, Gerbrand
description Despite several reports on the surface phase transformations from a layered to a disordered spinel and a rock-salt structure at the surface of the Ni-rich cathodes, the precise structures and compositions of these surface phases are unknown. The phenomenon, in itself, is complex and involves the participation of several contributing factors. Of these factors, transition metal (TM) ion migration toward the interior of the particle and hence formation of TM-densified surface layers, triggered by oxygen loss, is thermodynamically probable. Here, we simulate the thermodynamic phase equilibria as a function of TM ion content in the cathode material in the context of lithium nickel oxides, using a combined approach of first-principles density functional calculations, the cluster expansion method, and grand canonical Monte Carlo simulations. We developed a unified lattice Hamiltonian that accommodates not only rock-salt like structures but also topologically different spinel-like structures. Also, our model provides a foundation to investigate metastable cation compositions and kinetics of the phase transformations. Our investigations predict the existence of several Ni-rich phases that were, to date, unknown in the scientific literature. Our simulated phase diagrams at finite temperature show a very low solubility range of the prototype spinel phase. We find a partially disordered spinel-like phase with far greater solubility that is expected to show very different Li diffusivity compared to that of the prototype spinel structure.
doi_str_mv 10.1021/acs.chemmater.7b02546
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1469877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a540826919</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-96d678efc5b67ade6514a27e321718e1778c7c9ec835097ba4dcb9f35465df393</originalsourceid><addsrcrecordid>eNqFkEtOwzAQhi0EEuVxBCSLFSxS7CSOkyUqr0qBVry20cSZEFdNUtkuEjvOADfkJDgUsWXjkeX_m_F8hBxxNuYs5Geg7Fg12Lbg0IxlyUIRJ1tkxEXIAsFYuE1GLM1kEEuR7JI9axeMcY-mI_JxpY11wdzoTunVEi190O16CU73He1r6hqkJ7n-ev-8G45nUNCpt9MZnTdgkV5oeDHQUugqOnWW3uMSX30Cad2bH_hhbWrw95-8pbqjdzq416qhuQ6mfsgEXNNXSG-H32tY2gOyU_uCh791nzxdXT5OboJ8dj2dnOcBREnmgiypEplirUSZSKgwETyGUGIUcslT5FKmSqoMVRoJlskS4kqVWR15N6KqoyzaJ8ebvr11urBKO1SN6rsOlSt4nGSplD4kNiFlemsN1sXK6BbMW8FZMdgvvP3iz37xa99zfMMNz4t-bTq_yj_MN4zMj1o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First-Principles Simulation of the (Li–Ni–Vacancy)O Phase Diagram and Its Relevance for the Surface Phases in Ni-Rich Li-Ion Cathode Materials</title><source>ACS Publications</source><creator>Das, Hena ; Urban, Alexander ; Huang, Wenxuan ; Ceder, Gerbrand</creator><creatorcontrib>Das, Hena ; Urban, Alexander ; Huang, Wenxuan ; Ceder, Gerbrand ; Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES)</creatorcontrib><description>Despite several reports on the surface phase transformations from a layered to a disordered spinel and a rock-salt structure at the surface of the Ni-rich cathodes, the precise structures and compositions of these surface phases are unknown. The phenomenon, in itself, is complex and involves the participation of several contributing factors. Of these factors, transition metal (TM) ion migration toward the interior of the particle and hence formation of TM-densified surface layers, triggered by oxygen loss, is thermodynamically probable. Here, we simulate the thermodynamic phase equilibria as a function of TM ion content in the cathode material in the context of lithium nickel oxides, using a combined approach of first-principles density functional calculations, the cluster expansion method, and grand canonical Monte Carlo simulations. We developed a unified lattice Hamiltonian that accommodates not only rock-salt like structures but also topologically different spinel-like structures. Also, our model provides a foundation to investigate metastable cation compositions and kinetics of the phase transformations. Our investigations predict the existence of several Ni-rich phases that were, to date, unknown in the scientific literature. Our simulated phase diagrams at finite temperature show a very low solubility range of the prototype spinel phase. We find a partially disordered spinel-like phase with far greater solubility that is expected to show very different Li diffusivity compared to that of the prototype spinel structure.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.7b02546</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>energy storage (including batteries and capacitors), defects, charge transport, materials and chemistry by design, synthesis (novel materials)</subject><ispartof>Chemistry of materials, 2017-09, Vol.29 (18), p.7840-7851</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-96d678efc5b67ade6514a27e321718e1778c7c9ec835097ba4dcb9f35465df393</citedby><cites>FETCH-LOGICAL-a369t-96d678efc5b67ade6514a27e321718e1778c7c9ec835097ba4dcb9f35465df393</cites><orcidid>0000-0001-5378-066X ; 000000015378066X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.7b02546$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.7b02546$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,782,786,887,2769,27085,27933,27934,56747,56797</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1469877$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Das, Hena</creatorcontrib><creatorcontrib>Urban, Alexander</creatorcontrib><creatorcontrib>Huang, Wenxuan</creatorcontrib><creatorcontrib>Ceder, Gerbrand</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES)</creatorcontrib><title>First-Principles Simulation of the (Li–Ni–Vacancy)O Phase Diagram and Its Relevance for the Surface Phases in Ni-Rich Li-Ion Cathode Materials</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Despite several reports on the surface phase transformations from a layered to a disordered spinel and a rock-salt structure at the surface of the Ni-rich cathodes, the precise structures and compositions of these surface phases are unknown. The phenomenon, in itself, is complex and involves the participation of several contributing factors. Of these factors, transition metal (TM) ion migration toward the interior of the particle and hence formation of TM-densified surface layers, triggered by oxygen loss, is thermodynamically probable. Here, we simulate the thermodynamic phase equilibria as a function of TM ion content in the cathode material in the context of lithium nickel oxides, using a combined approach of first-principles density functional calculations, the cluster expansion method, and grand canonical Monte Carlo simulations. We developed a unified lattice Hamiltonian that accommodates not only rock-salt like structures but also topologically different spinel-like structures. Also, our model provides a foundation to investigate metastable cation compositions and kinetics of the phase transformations. Our investigations predict the existence of several Ni-rich phases that were, to date, unknown in the scientific literature. Our simulated phase diagrams at finite temperature show a very low solubility range of the prototype spinel phase. We find a partially disordered spinel-like phase with far greater solubility that is expected to show very different Li diffusivity compared to that of the prototype spinel structure.</description><subject>energy storage (including batteries and capacitors), defects, charge transport, materials and chemistry by design, synthesis (novel materials)</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAQhi0EEuVxBCSLFSxS7CSOkyUqr0qBVry20cSZEFdNUtkuEjvOADfkJDgUsWXjkeX_m_F8hBxxNuYs5Geg7Fg12Lbg0IxlyUIRJ1tkxEXIAsFYuE1GLM1kEEuR7JI9axeMcY-mI_JxpY11wdzoTunVEi190O16CU73He1r6hqkJ7n-ev-8G45nUNCpt9MZnTdgkV5oeDHQUugqOnWW3uMSX30Cad2bH_hhbWrw95-8pbqjdzq416qhuQ6mfsgEXNNXSG-H32tY2gOyU_uCh791nzxdXT5OboJ8dj2dnOcBREnmgiypEplirUSZSKgwETyGUGIUcslT5FKmSqoMVRoJlskS4kqVWR15N6KqoyzaJ8ebvr11urBKO1SN6rsOlSt4nGSplD4kNiFlemsN1sXK6BbMW8FZMdgvvP3iz37xa99zfMMNz4t-bTq_yj_MN4zMj1o</recordid><startdate>20170926</startdate><enddate>20170926</enddate><creator>Das, Hena</creator><creator>Urban, Alexander</creator><creator>Huang, Wenxuan</creator><creator>Ceder, Gerbrand</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5378-066X</orcidid><orcidid>https://orcid.org/000000015378066X</orcidid></search><sort><creationdate>20170926</creationdate><title>First-Principles Simulation of the (Li–Ni–Vacancy)O Phase Diagram and Its Relevance for the Surface Phases in Ni-Rich Li-Ion Cathode Materials</title><author>Das, Hena ; Urban, Alexander ; Huang, Wenxuan ; Ceder, Gerbrand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-96d678efc5b67ade6514a27e321718e1778c7c9ec835097ba4dcb9f35465df393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>energy storage (including batteries and capacitors), defects, charge transport, materials and chemistry by design, synthesis (novel materials)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Hena</creatorcontrib><creatorcontrib>Urban, Alexander</creatorcontrib><creatorcontrib>Huang, Wenxuan</creatorcontrib><creatorcontrib>Ceder, Gerbrand</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Hena</au><au>Urban, Alexander</au><au>Huang, Wenxuan</au><au>Ceder, Gerbrand</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-Principles Simulation of the (Li–Ni–Vacancy)O Phase Diagram and Its Relevance for the Surface Phases in Ni-Rich Li-Ion Cathode Materials</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2017-09-26</date><risdate>2017</risdate><volume>29</volume><issue>18</issue><spage>7840</spage><epage>7851</epage><pages>7840-7851</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Despite several reports on the surface phase transformations from a layered to a disordered spinel and a rock-salt structure at the surface of the Ni-rich cathodes, the precise structures and compositions of these surface phases are unknown. The phenomenon, in itself, is complex and involves the participation of several contributing factors. Of these factors, transition metal (TM) ion migration toward the interior of the particle and hence formation of TM-densified surface layers, triggered by oxygen loss, is thermodynamically probable. Here, we simulate the thermodynamic phase equilibria as a function of TM ion content in the cathode material in the context of lithium nickel oxides, using a combined approach of first-principles density functional calculations, the cluster expansion method, and grand canonical Monte Carlo simulations. We developed a unified lattice Hamiltonian that accommodates not only rock-salt like structures but also topologically different spinel-like structures. Also, our model provides a foundation to investigate metastable cation compositions and kinetics of the phase transformations. Our investigations predict the existence of several Ni-rich phases that were, to date, unknown in the scientific literature. Our simulated phase diagrams at finite temperature show a very low solubility range of the prototype spinel phase. We find a partially disordered spinel-like phase with far greater solubility that is expected to show very different Li diffusivity compared to that of the prototype spinel structure.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.7b02546</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5378-066X</orcidid><orcidid>https://orcid.org/000000015378066X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2017-09, Vol.29 (18), p.7840-7851
issn 0897-4756
1520-5002
language eng
recordid cdi_osti_scitechconnect_1469877
source ACS Publications
subjects energy storage (including batteries and capacitors), defects, charge transport, materials and chemistry by design, synthesis (novel materials)
title First-Principles Simulation of the (Li–Ni–Vacancy)O Phase Diagram and Its Relevance for the Surface Phases in Ni-Rich Li-Ion Cathode Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T05%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-Principles%20Simulation%20of%20the%20(Li%E2%80%93Ni%E2%80%93Vacancy)O%20Phase%20Diagram%20and%20Its%20Relevance%20for%20the%20Surface%20Phases%20in%20Ni-Rich%20Li-Ion%20Cathode%20Materials&rft.jtitle=Chemistry%20of%20materials&rft.au=Das,%20Hena&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Northeastern%20Center%20for%20Chemical%20Energy%20Storage%20(NECCES)&rft.date=2017-09-26&rft.volume=29&rft.issue=18&rft.spage=7840&rft.epage=7851&rft.pages=7840-7851&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.7b02546&rft_dat=%3Cacs_osti_%3Ea540826919%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true