First-Principles Simulation of the (Li–Ni–Vacancy)O Phase Diagram and Its Relevance for the Surface Phases in Ni-Rich Li-Ion Cathode Materials
Despite several reports on the surface phase transformations from a layered to a disordered spinel and a rock-salt structure at the surface of the Ni-rich cathodes, the precise structures and compositions of these surface phases are unknown. The phenomenon, in itself, is complex and involves the par...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2017-09, Vol.29 (18), p.7840-7851 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7851 |
---|---|
container_issue | 18 |
container_start_page | 7840 |
container_title | Chemistry of materials |
container_volume | 29 |
creator | Das, Hena Urban, Alexander Huang, Wenxuan Ceder, Gerbrand |
description | Despite several reports on the surface phase transformations from a layered to a disordered spinel and a rock-salt structure at the surface of the Ni-rich cathodes, the precise structures and compositions of these surface phases are unknown. The phenomenon, in itself, is complex and involves the participation of several contributing factors. Of these factors, transition metal (TM) ion migration toward the interior of the particle and hence formation of TM-densified surface layers, triggered by oxygen loss, is thermodynamically probable. Here, we simulate the thermodynamic phase equilibria as a function of TM ion content in the cathode material in the context of lithium nickel oxides, using a combined approach of first-principles density functional calculations, the cluster expansion method, and grand canonical Monte Carlo simulations. We developed a unified lattice Hamiltonian that accommodates not only rock-salt like structures but also topologically different spinel-like structures. Also, our model provides a foundation to investigate metastable cation compositions and kinetics of the phase transformations. Our investigations predict the existence of several Ni-rich phases that were, to date, unknown in the scientific literature. Our simulated phase diagrams at finite temperature show a very low solubility range of the prototype spinel phase. We find a partially disordered spinel-like phase with far greater solubility that is expected to show very different Li diffusivity compared to that of the prototype spinel structure. |
doi_str_mv | 10.1021/acs.chemmater.7b02546 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1469877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a540826919</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-96d678efc5b67ade6514a27e321718e1778c7c9ec835097ba4dcb9f35465df393</originalsourceid><addsrcrecordid>eNqFkEtOwzAQhi0EEuVxBCSLFSxS7CSOkyUqr0qBVry20cSZEFdNUtkuEjvOADfkJDgUsWXjkeX_m_F8hBxxNuYs5Geg7Fg12Lbg0IxlyUIRJ1tkxEXIAsFYuE1GLM1kEEuR7JI9axeMcY-mI_JxpY11wdzoTunVEi190O16CU73He1r6hqkJ7n-ev-8G45nUNCpt9MZnTdgkV5oeDHQUugqOnWW3uMSX30Cad2bH_hhbWrw95-8pbqjdzq416qhuQ6mfsgEXNNXSG-H32tY2gOyU_uCh791nzxdXT5OboJ8dj2dnOcBREnmgiypEplirUSZSKgwETyGUGIUcslT5FKmSqoMVRoJlskS4kqVWR15N6KqoyzaJ8ebvr11urBKO1SN6rsOlSt4nGSplD4kNiFlemsN1sXK6BbMW8FZMdgvvP3iz37xa99zfMMNz4t-bTq_yj_MN4zMj1o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First-Principles Simulation of the (Li–Ni–Vacancy)O Phase Diagram and Its Relevance for the Surface Phases in Ni-Rich Li-Ion Cathode Materials</title><source>ACS Publications</source><creator>Das, Hena ; Urban, Alexander ; Huang, Wenxuan ; Ceder, Gerbrand</creator><creatorcontrib>Das, Hena ; Urban, Alexander ; Huang, Wenxuan ; Ceder, Gerbrand ; Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES)</creatorcontrib><description>Despite several reports on the surface phase transformations from a layered to a disordered spinel and a rock-salt structure at the surface of the Ni-rich cathodes, the precise structures and compositions of these surface phases are unknown. The phenomenon, in itself, is complex and involves the participation of several contributing factors. Of these factors, transition metal (TM) ion migration toward the interior of the particle and hence formation of TM-densified surface layers, triggered by oxygen loss, is thermodynamically probable. Here, we simulate the thermodynamic phase equilibria as a function of TM ion content in the cathode material in the context of lithium nickel oxides, using a combined approach of first-principles density functional calculations, the cluster expansion method, and grand canonical Monte Carlo simulations. We developed a unified lattice Hamiltonian that accommodates not only rock-salt like structures but also topologically different spinel-like structures. Also, our model provides a foundation to investigate metastable cation compositions and kinetics of the phase transformations. Our investigations predict the existence of several Ni-rich phases that were, to date, unknown in the scientific literature. Our simulated phase diagrams at finite temperature show a very low solubility range of the prototype spinel phase. We find a partially disordered spinel-like phase with far greater solubility that is expected to show very different Li diffusivity compared to that of the prototype spinel structure.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.7b02546</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>energy storage (including batteries and capacitors), defects, charge transport, materials and chemistry by design, synthesis (novel materials)</subject><ispartof>Chemistry of materials, 2017-09, Vol.29 (18), p.7840-7851</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-96d678efc5b67ade6514a27e321718e1778c7c9ec835097ba4dcb9f35465df393</citedby><cites>FETCH-LOGICAL-a369t-96d678efc5b67ade6514a27e321718e1778c7c9ec835097ba4dcb9f35465df393</cites><orcidid>0000-0001-5378-066X ; 000000015378066X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.7b02546$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.7b02546$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,782,786,887,2769,27085,27933,27934,56747,56797</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1469877$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Das, Hena</creatorcontrib><creatorcontrib>Urban, Alexander</creatorcontrib><creatorcontrib>Huang, Wenxuan</creatorcontrib><creatorcontrib>Ceder, Gerbrand</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES)</creatorcontrib><title>First-Principles Simulation of the (Li–Ni–Vacancy)O Phase Diagram and Its Relevance for the Surface Phases in Ni-Rich Li-Ion Cathode Materials</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Despite several reports on the surface phase transformations from a layered to a disordered spinel and a rock-salt structure at the surface of the Ni-rich cathodes, the precise structures and compositions of these surface phases are unknown. The phenomenon, in itself, is complex and involves the participation of several contributing factors. Of these factors, transition metal (TM) ion migration toward the interior of the particle and hence formation of TM-densified surface layers, triggered by oxygen loss, is thermodynamically probable. Here, we simulate the thermodynamic phase equilibria as a function of TM ion content in the cathode material in the context of lithium nickel oxides, using a combined approach of first-principles density functional calculations, the cluster expansion method, and grand canonical Monte Carlo simulations. We developed a unified lattice Hamiltonian that accommodates not only rock-salt like structures but also topologically different spinel-like structures. Also, our model provides a foundation to investigate metastable cation compositions and kinetics of the phase transformations. Our investigations predict the existence of several Ni-rich phases that were, to date, unknown in the scientific literature. Our simulated phase diagrams at finite temperature show a very low solubility range of the prototype spinel phase. We find a partially disordered spinel-like phase with far greater solubility that is expected to show very different Li diffusivity compared to that of the prototype spinel structure.</description><subject>energy storage (including batteries and capacitors), defects, charge transport, materials and chemistry by design, synthesis (novel materials)</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAQhi0EEuVxBCSLFSxS7CSOkyUqr0qBVry20cSZEFdNUtkuEjvOADfkJDgUsWXjkeX_m_F8hBxxNuYs5Geg7Fg12Lbg0IxlyUIRJ1tkxEXIAsFYuE1GLM1kEEuR7JI9axeMcY-mI_JxpY11wdzoTunVEi190O16CU73He1r6hqkJ7n-ev-8G45nUNCpt9MZnTdgkV5oeDHQUugqOnWW3uMSX30Cad2bH_hhbWrw95-8pbqjdzq416qhuQ6mfsgEXNNXSG-H32tY2gOyU_uCh791nzxdXT5OboJ8dj2dnOcBREnmgiypEplirUSZSKgwETyGUGIUcslT5FKmSqoMVRoJlskS4kqVWR15N6KqoyzaJ8ebvr11urBKO1SN6rsOlSt4nGSplD4kNiFlemsN1sXK6BbMW8FZMdgvvP3iz37xa99zfMMNz4t-bTq_yj_MN4zMj1o</recordid><startdate>20170926</startdate><enddate>20170926</enddate><creator>Das, Hena</creator><creator>Urban, Alexander</creator><creator>Huang, Wenxuan</creator><creator>Ceder, Gerbrand</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5378-066X</orcidid><orcidid>https://orcid.org/000000015378066X</orcidid></search><sort><creationdate>20170926</creationdate><title>First-Principles Simulation of the (Li–Ni–Vacancy)O Phase Diagram and Its Relevance for the Surface Phases in Ni-Rich Li-Ion Cathode Materials</title><author>Das, Hena ; Urban, Alexander ; Huang, Wenxuan ; Ceder, Gerbrand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-96d678efc5b67ade6514a27e321718e1778c7c9ec835097ba4dcb9f35465df393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>energy storage (including batteries and capacitors), defects, charge transport, materials and chemistry by design, synthesis (novel materials)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Hena</creatorcontrib><creatorcontrib>Urban, Alexander</creatorcontrib><creatorcontrib>Huang, Wenxuan</creatorcontrib><creatorcontrib>Ceder, Gerbrand</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Hena</au><au>Urban, Alexander</au><au>Huang, Wenxuan</au><au>Ceder, Gerbrand</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-Principles Simulation of the (Li–Ni–Vacancy)O Phase Diagram and Its Relevance for the Surface Phases in Ni-Rich Li-Ion Cathode Materials</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2017-09-26</date><risdate>2017</risdate><volume>29</volume><issue>18</issue><spage>7840</spage><epage>7851</epage><pages>7840-7851</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Despite several reports on the surface phase transformations from a layered to a disordered spinel and a rock-salt structure at the surface of the Ni-rich cathodes, the precise structures and compositions of these surface phases are unknown. The phenomenon, in itself, is complex and involves the participation of several contributing factors. Of these factors, transition metal (TM) ion migration toward the interior of the particle and hence formation of TM-densified surface layers, triggered by oxygen loss, is thermodynamically probable. Here, we simulate the thermodynamic phase equilibria as a function of TM ion content in the cathode material in the context of lithium nickel oxides, using a combined approach of first-principles density functional calculations, the cluster expansion method, and grand canonical Monte Carlo simulations. We developed a unified lattice Hamiltonian that accommodates not only rock-salt like structures but also topologically different spinel-like structures. Also, our model provides a foundation to investigate metastable cation compositions and kinetics of the phase transformations. Our investigations predict the existence of several Ni-rich phases that were, to date, unknown in the scientific literature. Our simulated phase diagrams at finite temperature show a very low solubility range of the prototype spinel phase. We find a partially disordered spinel-like phase with far greater solubility that is expected to show very different Li diffusivity compared to that of the prototype spinel structure.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.7b02546</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5378-066X</orcidid><orcidid>https://orcid.org/000000015378066X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2017-09, Vol.29 (18), p.7840-7851 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_osti_scitechconnect_1469877 |
source | ACS Publications |
subjects | energy storage (including batteries and capacitors), defects, charge transport, materials and chemistry by design, synthesis (novel materials) |
title | First-Principles Simulation of the (Li–Ni–Vacancy)O Phase Diagram and Its Relevance for the Surface Phases in Ni-Rich Li-Ion Cathode Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T05%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-Principles%20Simulation%20of%20the%20(Li%E2%80%93Ni%E2%80%93Vacancy)O%20Phase%20Diagram%20and%20Its%20Relevance%20for%20the%20Surface%20Phases%20in%20Ni-Rich%20Li-Ion%20Cathode%20Materials&rft.jtitle=Chemistry%20of%20materials&rft.au=Das,%20Hena&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Northeastern%20Center%20for%20Chemical%20Energy%20Storage%20(NECCES)&rft.date=2017-09-26&rft.volume=29&rft.issue=18&rft.spage=7840&rft.epage=7851&rft.pages=7840-7851&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.7b02546&rft_dat=%3Cacs_osti_%3Ea540826919%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |