Isotopic studies of trans- and cis-HOCO using rotational spectroscopy: Formation, chemical bonding, and molecular structures

HOCO is an important intermediate in combustion and atmospheric processes because the OH + CO → H + CO2 reaction represents the final step for the production of CO2 in hydrocarbon oxidation, and theoretical studies predict that this reaction proceeds via various intermediates, the most important bei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2016-03, Vol.144 (12), p.124304-124304
Hauptverfasser: McCarthy, Michael C., Martinez, Oscar, McGuire, Brett A., Crabtree, Kyle N., Martin-Drumel, Marie-Aline, Stanton, John F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124304
container_issue 12
container_start_page 124304
container_title The Journal of chemical physics
container_volume 144
creator McCarthy, Michael C.
Martinez, Oscar
McGuire, Brett A.
Crabtree, Kyle N.
Martin-Drumel, Marie-Aline
Stanton, John F.
description HOCO is an important intermediate in combustion and atmospheric processes because the OH + CO → H + CO2 reaction represents the final step for the production of CO2 in hydrocarbon oxidation, and theoretical studies predict that this reaction proceeds via various intermediates, the most important being this radical. Isotopic investigations of trans- and cis-HOCO have been undertaken using Fourier transform microwave spectroscopy and millimeter-wave double resonance techniques in combination with a supersonic molecular beam discharge source to better understand the formation, chemical bonding, and molecular structures of this radical pair. We find that trans-HOCO can be produced almost equally well from either OH + CO or H + CO2 in our discharge source, but cis-HOCO appears to be roughly two times more abundant when starting from H + CO2. Using isotopically labelled precursors, the OH + C18O reaction predominately yields HOC18O for both isomers, but H18OCO is observed as well, typically at the level of 10%-20% that of HOC18O; the opposite propensity is found for the 18OH + CO reaction. DO + C18O yields similar ratios between DOC18O and D18OCO as those found for OH + C18O, suggesting that some fraction of HOCO (or DOCO) may be formed from the back-reaction H + CO2, which, at the high pressure of our gas expansion, can readily occur. The large 13C Fermi-contact term (aF ) for trans- and cis-HO13CO implicates significant unpaired electronic density in a σ-type orbital at the carbon atom, in good agreement with theoretical predictions. By correcting the experimental rotational constants for zero-point vibration motion calculated theoretically using second-order vibrational perturbation theory, precise geometrical structures have been derived for both isomers.
doi_str_mv 10.1063/1.4944070
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1468981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1777983690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-d64f18dab8d5f7d979755f7688fa5d8fcf666ff8ded7e9232db0a011129c1ee63</originalsourceid><addsrcrecordid>eNp90UtrVDEUB_Agih2rC7-ABN1U6a3JfeThrgzWFgqz0XXI5GFT7r255iSFgh_edGasoOAqgfxycvI_CL2m5IwS1n2kZ73se8LJE7SiRMiGM0meohUhLW0kI-wIvQC4JYRQ3vbP0VHLScf6flihn1cQc1yCwZCLDQ5w9DgnPUOD9WyxCdBcbtYbXCDM33GKWecQZz1iWJzJKYKJy_0nfBHTtDs5xebGTcFUsY2zrZdOd4WmODpTRp3qQ6mYXJKDl-iZ1yO4V4f1GH27-Px1fdlcb75crc-vG1N7zI1lvafC6q2wg-dWcsmHumFCeD1Y4Y1njHkvrLPcybZr7ZZoQiltpaHOse4Yvd3XjZCDAhOyMzcmznP9gaI9E1LQik72aEnxR3GQ1RTAuHHUs4sFFOWcS9HVZCt99xe9jSXVUEC1tKWCCyKGqt7vlakpQXJeLSlMOt0rStTD3BRVh7lV--ZQsWwnZx_l70FV8GEPHrrfBf1o7mL6U0kt1v8P__v0L0LxrxY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121878085</pqid></control><display><type>article</type><title>Isotopic studies of trans- and cis-HOCO using rotational spectroscopy: Formation, chemical bonding, and molecular structures</title><source>AIP Journals</source><source>Alma/SFX Local Collection</source><creator>McCarthy, Michael C. ; Martinez, Oscar ; McGuire, Brett A. ; Crabtree, Kyle N. ; Martin-Drumel, Marie-Aline ; Stanton, John F.</creator><creatorcontrib>McCarthy, Michael C. ; Martinez, Oscar ; McGuire, Brett A. ; Crabtree, Kyle N. ; Martin-Drumel, Marie-Aline ; Stanton, John F. ; Univ. of Texas, Austin, TX (United States)</creatorcontrib><description>HOCO is an important intermediate in combustion and atmospheric processes because the OH + CO → H + CO2 reaction represents the final step for the production of CO2 in hydrocarbon oxidation, and theoretical studies predict that this reaction proceeds via various intermediates, the most important being this radical. Isotopic investigations of trans- and cis-HOCO have been undertaken using Fourier transform microwave spectroscopy and millimeter-wave double resonance techniques in combination with a supersonic molecular beam discharge source to better understand the formation, chemical bonding, and molecular structures of this radical pair. We find that trans-HOCO can be produced almost equally well from either OH + CO or H + CO2 in our discharge source, but cis-HOCO appears to be roughly two times more abundant when starting from H + CO2. Using isotopically labelled precursors, the OH + C18O reaction predominately yields HOC18O for both isomers, but H18OCO is observed as well, typically at the level of 10%-20% that of HOC18O; the opposite propensity is found for the 18OH + CO reaction. DO + C18O yields similar ratios between DOC18O and D18OCO as those found for OH + C18O, suggesting that some fraction of HOCO (or DOCO) may be formed from the back-reaction H + CO2, which, at the high pressure of our gas expansion, can readily occur. The large 13C Fermi-contact term (aF ) for trans- and cis-HO13CO implicates significant unpaired electronic density in a σ-type orbital at the carbon atom, in good agreement with theoretical predictions. By correcting the experimental rotational constants for zero-point vibration motion calculated theoretically using second-order vibrational perturbation theory, precise geometrical structures have been derived for both isomers.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4944070</identifier><identifier>PMID: 27036445</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>atmospheric processes ; Carbon dioxide ; Carbon monoxide ; chemical bonding ; Chemical bonds ; chemical compounds and components ; chemical elements ; combustion ; Discharge ; ENVIRONMENTAL SCIENCES ; Fourier transforms ; Gas expansion ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; isomerism ; Isomers ; Millimeter waves ; Molecular beams ; Organic chemistry ; organic compounds ; Oxidation ; Perturbation methods ; Perturbation theory ; Physics ; radio spectrum ; Rotational spectra ; Spectrum analysis</subject><ispartof>The Journal of chemical physics, 2016-03, Vol.144 (12), p.124304-124304</ispartof><rights>AIP Publishing LLC</rights><rights>2016 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-d64f18dab8d5f7d979755f7688fa5d8fcf666ff8ded7e9232db0a011129c1ee63</citedby><cites>FETCH-LOGICAL-c445t-d64f18dab8d5f7d979755f7688fa5d8fcf666ff8ded7e9232db0a011129c1ee63</cites><orcidid>0000-0002-5460-4294 ; 0000-0001-5629-5192 ; 0000-0003-1254-4817 ; 0000000254604294 ; 0000000156295192 ; 0000000312544817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4944070$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27036445$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1468981$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McCarthy, Michael C.</creatorcontrib><creatorcontrib>Martinez, Oscar</creatorcontrib><creatorcontrib>McGuire, Brett A.</creatorcontrib><creatorcontrib>Crabtree, Kyle N.</creatorcontrib><creatorcontrib>Martin-Drumel, Marie-Aline</creatorcontrib><creatorcontrib>Stanton, John F.</creatorcontrib><creatorcontrib>Univ. of Texas, Austin, TX (United States)</creatorcontrib><title>Isotopic studies of trans- and cis-HOCO using rotational spectroscopy: Formation, chemical bonding, and molecular structures</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>HOCO is an important intermediate in combustion and atmospheric processes because the OH + CO → H + CO2 reaction represents the final step for the production of CO2 in hydrocarbon oxidation, and theoretical studies predict that this reaction proceeds via various intermediates, the most important being this radical. Isotopic investigations of trans- and cis-HOCO have been undertaken using Fourier transform microwave spectroscopy and millimeter-wave double resonance techniques in combination with a supersonic molecular beam discharge source to better understand the formation, chemical bonding, and molecular structures of this radical pair. We find that trans-HOCO can be produced almost equally well from either OH + CO or H + CO2 in our discharge source, but cis-HOCO appears to be roughly two times more abundant when starting from H + CO2. Using isotopically labelled precursors, the OH + C18O reaction predominately yields HOC18O for both isomers, but H18OCO is observed as well, typically at the level of 10%-20% that of HOC18O; the opposite propensity is found for the 18OH + CO reaction. DO + C18O yields similar ratios between DOC18O and D18OCO as those found for OH + C18O, suggesting that some fraction of HOCO (or DOCO) may be formed from the back-reaction H + CO2, which, at the high pressure of our gas expansion, can readily occur. The large 13C Fermi-contact term (aF ) for trans- and cis-HO13CO implicates significant unpaired electronic density in a σ-type orbital at the carbon atom, in good agreement with theoretical predictions. By correcting the experimental rotational constants for zero-point vibration motion calculated theoretically using second-order vibrational perturbation theory, precise geometrical structures have been derived for both isomers.</description><subject>atmospheric processes</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>chemical bonding</subject><subject>Chemical bonds</subject><subject>chemical compounds and components</subject><subject>chemical elements</subject><subject>combustion</subject><subject>Discharge</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Fourier transforms</subject><subject>Gas expansion</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>isomerism</subject><subject>Isomers</subject><subject>Millimeter waves</subject><subject>Molecular beams</subject><subject>Organic chemistry</subject><subject>organic compounds</subject><subject>Oxidation</subject><subject>Perturbation methods</subject><subject>Perturbation theory</subject><subject>Physics</subject><subject>radio spectrum</subject><subject>Rotational spectra</subject><subject>Spectrum analysis</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90UtrVDEUB_Agih2rC7-ABN1U6a3JfeThrgzWFgqz0XXI5GFT7r255iSFgh_edGasoOAqgfxycvI_CL2m5IwS1n2kZ73se8LJE7SiRMiGM0meohUhLW0kI-wIvQC4JYRQ3vbP0VHLScf6flihn1cQc1yCwZCLDQ5w9DgnPUOD9WyxCdBcbtYbXCDM33GKWecQZz1iWJzJKYKJy_0nfBHTtDs5xebGTcFUsY2zrZdOd4WmODpTRp3qQ6mYXJKDl-iZ1yO4V4f1GH27-Px1fdlcb75crc-vG1N7zI1lvafC6q2wg-dWcsmHumFCeD1Y4Y1njHkvrLPcybZr7ZZoQiltpaHOse4Yvd3XjZCDAhOyMzcmznP9gaI9E1LQik72aEnxR3GQ1RTAuHHUs4sFFOWcS9HVZCt99xe9jSXVUEC1tKWCCyKGqt7vlakpQXJeLSlMOt0rStTD3BRVh7lV--ZQsWwnZx_l70FV8GEPHrrfBf1o7mL6U0kt1v8P__v0L0LxrxY</recordid><startdate>20160328</startdate><enddate>20160328</enddate><creator>McCarthy, Michael C.</creator><creator>Martinez, Oscar</creator><creator>McGuire, Brett A.</creator><creator>Crabtree, Kyle N.</creator><creator>Martin-Drumel, Marie-Aline</creator><creator>Stanton, John F.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5460-4294</orcidid><orcidid>https://orcid.org/0000-0001-5629-5192</orcidid><orcidid>https://orcid.org/0000-0003-1254-4817</orcidid><orcidid>https://orcid.org/0000000254604294</orcidid><orcidid>https://orcid.org/0000000156295192</orcidid><orcidid>https://orcid.org/0000000312544817</orcidid></search><sort><creationdate>20160328</creationdate><title>Isotopic studies of trans- and cis-HOCO using rotational spectroscopy: Formation, chemical bonding, and molecular structures</title><author>McCarthy, Michael C. ; Martinez, Oscar ; McGuire, Brett A. ; Crabtree, Kyle N. ; Martin-Drumel, Marie-Aline ; Stanton, John F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-d64f18dab8d5f7d979755f7688fa5d8fcf666ff8ded7e9232db0a011129c1ee63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>atmospheric processes</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>chemical bonding</topic><topic>Chemical bonds</topic><topic>chemical compounds and components</topic><topic>chemical elements</topic><topic>combustion</topic><topic>Discharge</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Fourier transforms</topic><topic>Gas expansion</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>isomerism</topic><topic>Isomers</topic><topic>Millimeter waves</topic><topic>Molecular beams</topic><topic>Organic chemistry</topic><topic>organic compounds</topic><topic>Oxidation</topic><topic>Perturbation methods</topic><topic>Perturbation theory</topic><topic>Physics</topic><topic>radio spectrum</topic><topic>Rotational spectra</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCarthy, Michael C.</creatorcontrib><creatorcontrib>Martinez, Oscar</creatorcontrib><creatorcontrib>McGuire, Brett A.</creatorcontrib><creatorcontrib>Crabtree, Kyle N.</creatorcontrib><creatorcontrib>Martin-Drumel, Marie-Aline</creatorcontrib><creatorcontrib>Stanton, John F.</creatorcontrib><creatorcontrib>Univ. of Texas, Austin, TX (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCarthy, Michael C.</au><au>Martinez, Oscar</au><au>McGuire, Brett A.</au><au>Crabtree, Kyle N.</au><au>Martin-Drumel, Marie-Aline</au><au>Stanton, John F.</au><aucorp>Univ. of Texas, Austin, TX (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isotopic studies of trans- and cis-HOCO using rotational spectroscopy: Formation, chemical bonding, and molecular structures</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2016-03-28</date><risdate>2016</risdate><volume>144</volume><issue>12</issue><spage>124304</spage><epage>124304</epage><pages>124304-124304</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>HOCO is an important intermediate in combustion and atmospheric processes because the OH + CO → H + CO2 reaction represents the final step for the production of CO2 in hydrocarbon oxidation, and theoretical studies predict that this reaction proceeds via various intermediates, the most important being this radical. Isotopic investigations of trans- and cis-HOCO have been undertaken using Fourier transform microwave spectroscopy and millimeter-wave double resonance techniques in combination with a supersonic molecular beam discharge source to better understand the formation, chemical bonding, and molecular structures of this radical pair. We find that trans-HOCO can be produced almost equally well from either OH + CO or H + CO2 in our discharge source, but cis-HOCO appears to be roughly two times more abundant when starting from H + CO2. Using isotopically labelled precursors, the OH + C18O reaction predominately yields HOC18O for both isomers, but H18OCO is observed as well, typically at the level of 10%-20% that of HOC18O; the opposite propensity is found for the 18OH + CO reaction. DO + C18O yields similar ratios between DOC18O and D18OCO as those found for OH + C18O, suggesting that some fraction of HOCO (or DOCO) may be formed from the back-reaction H + CO2, which, at the high pressure of our gas expansion, can readily occur. The large 13C Fermi-contact term (aF ) for trans- and cis-HO13CO implicates significant unpaired electronic density in a σ-type orbital at the carbon atom, in good agreement with theoretical predictions. By correcting the experimental rotational constants for zero-point vibration motion calculated theoretically using second-order vibrational perturbation theory, precise geometrical structures have been derived for both isomers.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27036445</pmid><doi>10.1063/1.4944070</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5460-4294</orcidid><orcidid>https://orcid.org/0000-0001-5629-5192</orcidid><orcidid>https://orcid.org/0000-0003-1254-4817</orcidid><orcidid>https://orcid.org/0000000254604294</orcidid><orcidid>https://orcid.org/0000000156295192</orcidid><orcidid>https://orcid.org/0000000312544817</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2016-03, Vol.144 (12), p.124304-124304
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_1468981
source AIP Journals; Alma/SFX Local Collection
subjects atmospheric processes
Carbon dioxide
Carbon monoxide
chemical bonding
Chemical bonds
chemical compounds and components
chemical elements
combustion
Discharge
ENVIRONMENTAL SCIENCES
Fourier transforms
Gas expansion
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
isomerism
Isomers
Millimeter waves
Molecular beams
Organic chemistry
organic compounds
Oxidation
Perturbation methods
Perturbation theory
Physics
radio spectrum
Rotational spectra
Spectrum analysis
title Isotopic studies of trans- and cis-HOCO using rotational spectroscopy: Formation, chemical bonding, and molecular structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isotopic%20studies%20of%20trans-%20and%20cis-HOCO%20using%20rotational%20spectroscopy:%20Formation,%20chemical%20bonding,%20and%20molecular%20structures&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=McCarthy,%20Michael%20C.&rft.aucorp=Univ.%20of%20Texas,%20Austin,%20TX%20(United%20States)&rft.date=2016-03-28&rft.volume=144&rft.issue=12&rft.spage=124304&rft.epage=124304&rft.pages=124304-124304&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4944070&rft_dat=%3Cproquest_osti_%3E1777983690%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121878085&rft_id=info:pmid/27036445&rfr_iscdi=true