SIESTA‐SIPs: Massively parallel spectrum‐slicing eigensolver for an ab initio molecular dynamics package

Integration of Shift‐and‐Invert Parallel Spectral Transformation (SIPs) eigensolver (as implemented in the SLEPc library) into an ab initio molecular dynamics package, SIESTA, is described. The effectiveness of the code is demonstrated on applications to polyethylene chains, boron nitride sheets, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2018-08, Vol.39 (22), p.1806-1814
Hauptverfasser: Keçeli, Murat, Corsetti, Fabiano, Campos, Carmen, Roman, Jose E., Zhang, Hong, Vázquez‐Mayagoitia, Álvaro, Zapol, Peter, Wagner, Albert F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1814
container_issue 22
container_start_page 1806
container_title Journal of computational chemistry
container_volume 39
creator Keçeli, Murat
Corsetti, Fabiano
Campos, Carmen
Roman, Jose E.
Zhang, Hong
Vázquez‐Mayagoitia, Álvaro
Zapol, Peter
Wagner, Albert F.
description Integration of Shift‐and‐Invert Parallel Spectral Transformation (SIPs) eigensolver (as implemented in the SLEPc library) into an ab initio molecular dynamics package, SIESTA, is described. The effectiveness of the code is demonstrated on applications to polyethylene chains, boron nitride sheets, and bulk water clusters. For problems with the same number of orbitals, the performance of the SLEPc eigensolver depends on the sparsity of the matrices involved, favoring reduced dimensional systems such as polyethylene or boron nitride sheets in comparison to bulk systems like water clusters. For all problems investigated, performance of SIESTA‐SIPs exceeds the performance of SIESTA with default solver (ScaLAPACK) at the larger number of cores and the larger number of orbitals. A method that improves the load‐balance with each iteration in the self‐consistency cycle by exploiting the emerging knowledge of the eigenvalue spectrum is demonstrated. © 2018 Wiley Periodicals, Inc. Matrix diagonalization is often the bottleneck of scalability for electronic structure codes based on density‐functional theory. Implementation details and benchmark results are presented for a scalable sparse eigensolver integrated into SIESTA ab initio molecular dynamics package.
doi_str_mv 10.1002/jcc.25350
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1468621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092469771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3800-de9e37bd9f5b797a73843c65c5f68341725c81dcbe47d77fa22ba8ed6d7d98ea3</originalsourceid><addsrcrecordid>eNp10c1u1DAUhmELUdFhYMENIAs2sEjrnziO2VWjAlMVgTRFYmc5zsngwYkHOymaHZfANXIleEhhgcTKm0evdPwh9ISSM0oIO99Ze8YEF-QeWlCiqkLV8tN9tCBUsaKuBD1FD1PaEUK4qMoH6JQTWlLBywXym_Xl5ubi5_cfm_WH9Aq_Mym5W_AHvDfReA8epz3YMU59Nsk764YtBreFIQV_CxF3IWIzYNNgN7jRBdwHD3byJuL2MJje2ZRb9ovZwiN00hmf4PHdu0QfX1_erN4W1-_frFcX14XlNSFFCwq4bFrViUYqaSSvS24rYUVX1bykkglb09Y2UMpWys4w1pga2qqVrarB8CV6NndDGp1O1o1gP9swDPkQTcuqrhjN6MWM9jF8nSCNunfJgvdmgDAlzYjinDCRP22Jnv9Dd2GKQz7hqFhZKSmPwZezsjGkFKHT--h6Ew-aEn3cSeed9O-dsn16V5yaHtq_8s8wGZzP4JvzcPh_SV-tVnPyF-Qqnco</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092469771</pqid></control><display><type>article</type><title>SIESTA‐SIPs: Massively parallel spectrum‐slicing eigensolver for an ab initio molecular dynamics package</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Keçeli, Murat ; Corsetti, Fabiano ; Campos, Carmen ; Roman, Jose E. ; Zhang, Hong ; Vázquez‐Mayagoitia, Álvaro ; Zapol, Peter ; Wagner, Albert F.</creator><creatorcontrib>Keçeli, Murat ; Corsetti, Fabiano ; Campos, Carmen ; Roman, Jose E. ; Zhang, Hong ; Vázquez‐Mayagoitia, Álvaro ; Zapol, Peter ; Wagner, Albert F. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Integration of Shift‐and‐Invert Parallel Spectral Transformation (SIPs) eigensolver (as implemented in the SLEPc library) into an ab initio molecular dynamics package, SIESTA, is described. The effectiveness of the code is demonstrated on applications to polyethylene chains, boron nitride sheets, and bulk water clusters. For problems with the same number of orbitals, the performance of the SLEPc eigensolver depends on the sparsity of the matrices involved, favoring reduced dimensional systems such as polyethylene or boron nitride sheets in comparison to bulk systems like water clusters. For all problems investigated, performance of SIESTA‐SIPs exceeds the performance of SIESTA with default solver (ScaLAPACK) at the larger number of cores and the larger number of orbitals. A method that improves the load‐balance with each iteration in the self‐consistency cycle by exploiting the emerging knowledge of the eigenvalue spectrum is demonstrated. © 2018 Wiley Periodicals, Inc. Matrix diagonalization is often the bottleneck of scalability for electronic structure codes based on density‐functional theory. Implementation details and benchmark results are presented for a scalable sparse eigensolver integrated into SIESTA ab initio molecular dynamics package.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.25350</identifier><identifier>PMID: 30141534</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>ab initio ; Boron ; Boron nitride ; Clusters ; DFT ; eigensolver ; Eigenvalues ; Molecular dynamics ; Orbitals ; Polyethylene ; Polyethylenes ; SCF ; Sheets ; Slicing ; sparse</subject><ispartof>Journal of computational chemistry, 2018-08, Vol.39 (22), p.1806-1814</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3800-de9e37bd9f5b797a73843c65c5f68341725c81dcbe47d77fa22ba8ed6d7d98ea3</citedby><cites>FETCH-LOGICAL-c3800-de9e37bd9f5b797a73843c65c5f68341725c81dcbe47d77fa22ba8ed6d7d98ea3</cites><orcidid>0000-0001-8588-9272 ; 0000000185889272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.25350$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.25350$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30141534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1468621$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Keçeli, Murat</creatorcontrib><creatorcontrib>Corsetti, Fabiano</creatorcontrib><creatorcontrib>Campos, Carmen</creatorcontrib><creatorcontrib>Roman, Jose E.</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Vázquez‐Mayagoitia, Álvaro</creatorcontrib><creatorcontrib>Zapol, Peter</creatorcontrib><creatorcontrib>Wagner, Albert F.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>SIESTA‐SIPs: Massively parallel spectrum‐slicing eigensolver for an ab initio molecular dynamics package</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>Integration of Shift‐and‐Invert Parallel Spectral Transformation (SIPs) eigensolver (as implemented in the SLEPc library) into an ab initio molecular dynamics package, SIESTA, is described. The effectiveness of the code is demonstrated on applications to polyethylene chains, boron nitride sheets, and bulk water clusters. For problems with the same number of orbitals, the performance of the SLEPc eigensolver depends on the sparsity of the matrices involved, favoring reduced dimensional systems such as polyethylene or boron nitride sheets in comparison to bulk systems like water clusters. For all problems investigated, performance of SIESTA‐SIPs exceeds the performance of SIESTA with default solver (ScaLAPACK) at the larger number of cores and the larger number of orbitals. A method that improves the load‐balance with each iteration in the self‐consistency cycle by exploiting the emerging knowledge of the eigenvalue spectrum is demonstrated. © 2018 Wiley Periodicals, Inc. Matrix diagonalization is often the bottleneck of scalability for electronic structure codes based on density‐functional theory. Implementation details and benchmark results are presented for a scalable sparse eigensolver integrated into SIESTA ab initio molecular dynamics package.</description><subject>ab initio</subject><subject>Boron</subject><subject>Boron nitride</subject><subject>Clusters</subject><subject>DFT</subject><subject>eigensolver</subject><subject>Eigenvalues</subject><subject>Molecular dynamics</subject><subject>Orbitals</subject><subject>Polyethylene</subject><subject>Polyethylenes</subject><subject>SCF</subject><subject>Sheets</subject><subject>Slicing</subject><subject>sparse</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10c1u1DAUhmELUdFhYMENIAs2sEjrnziO2VWjAlMVgTRFYmc5zsngwYkHOymaHZfANXIleEhhgcTKm0evdPwh9ISSM0oIO99Ze8YEF-QeWlCiqkLV8tN9tCBUsaKuBD1FD1PaEUK4qMoH6JQTWlLBywXym_Xl5ubi5_cfm_WH9Aq_Mym5W_AHvDfReA8epz3YMU59Nsk764YtBreFIQV_CxF3IWIzYNNgN7jRBdwHD3byJuL2MJje2ZRb9ovZwiN00hmf4PHdu0QfX1_erN4W1-_frFcX14XlNSFFCwq4bFrViUYqaSSvS24rYUVX1bykkglb09Y2UMpWys4w1pga2qqVrarB8CV6NndDGp1O1o1gP9swDPkQTcuqrhjN6MWM9jF8nSCNunfJgvdmgDAlzYjinDCRP22Jnv9Dd2GKQz7hqFhZKSmPwZezsjGkFKHT--h6Ew-aEn3cSeed9O-dsn16V5yaHtq_8s8wGZzP4JvzcPh_SV-tVnPyF-Qqnco</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>Keçeli, Murat</creator><creator>Corsetti, Fabiano</creator><creator>Campos, Carmen</creator><creator>Roman, Jose E.</creator><creator>Zhang, Hong</creator><creator>Vázquez‐Mayagoitia, Álvaro</creator><creator>Zapol, Peter</creator><creator>Wagner, Albert F.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8588-9272</orcidid><orcidid>https://orcid.org/0000000185889272</orcidid></search><sort><creationdate>20180815</creationdate><title>SIESTA‐SIPs: Massively parallel spectrum‐slicing eigensolver for an ab initio molecular dynamics package</title><author>Keçeli, Murat ; Corsetti, Fabiano ; Campos, Carmen ; Roman, Jose E. ; Zhang, Hong ; Vázquez‐Mayagoitia, Álvaro ; Zapol, Peter ; Wagner, Albert F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3800-de9e37bd9f5b797a73843c65c5f68341725c81dcbe47d77fa22ba8ed6d7d98ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ab initio</topic><topic>Boron</topic><topic>Boron nitride</topic><topic>Clusters</topic><topic>DFT</topic><topic>eigensolver</topic><topic>Eigenvalues</topic><topic>Molecular dynamics</topic><topic>Orbitals</topic><topic>Polyethylene</topic><topic>Polyethylenes</topic><topic>SCF</topic><topic>Sheets</topic><topic>Slicing</topic><topic>sparse</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keçeli, Murat</creatorcontrib><creatorcontrib>Corsetti, Fabiano</creatorcontrib><creatorcontrib>Campos, Carmen</creatorcontrib><creatorcontrib>Roman, Jose E.</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Vázquez‐Mayagoitia, Álvaro</creatorcontrib><creatorcontrib>Zapol, Peter</creatorcontrib><creatorcontrib>Wagner, Albert F.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keçeli, Murat</au><au>Corsetti, Fabiano</au><au>Campos, Carmen</au><au>Roman, Jose E.</au><au>Zhang, Hong</au><au>Vázquez‐Mayagoitia, Álvaro</au><au>Zapol, Peter</au><au>Wagner, Albert F.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SIESTA‐SIPs: Massively parallel spectrum‐slicing eigensolver for an ab initio molecular dynamics package</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2018-08-15</date><risdate>2018</risdate><volume>39</volume><issue>22</issue><spage>1806</spage><epage>1814</epage><pages>1806-1814</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>Integration of Shift‐and‐Invert Parallel Spectral Transformation (SIPs) eigensolver (as implemented in the SLEPc library) into an ab initio molecular dynamics package, SIESTA, is described. The effectiveness of the code is demonstrated on applications to polyethylene chains, boron nitride sheets, and bulk water clusters. For problems with the same number of orbitals, the performance of the SLEPc eigensolver depends on the sparsity of the matrices involved, favoring reduced dimensional systems such as polyethylene or boron nitride sheets in comparison to bulk systems like water clusters. For all problems investigated, performance of SIESTA‐SIPs exceeds the performance of SIESTA with default solver (ScaLAPACK) at the larger number of cores and the larger number of orbitals. A method that improves the load‐balance with each iteration in the self‐consistency cycle by exploiting the emerging knowledge of the eigenvalue spectrum is demonstrated. © 2018 Wiley Periodicals, Inc. Matrix diagonalization is often the bottleneck of scalability for electronic structure codes based on density‐functional theory. Implementation details and benchmark results are presented for a scalable sparse eigensolver integrated into SIESTA ab initio molecular dynamics package.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30141534</pmid><doi>10.1002/jcc.25350</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8588-9272</orcidid><orcidid>https://orcid.org/0000000185889272</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2018-08, Vol.39 (22), p.1806-1814
issn 0192-8651
1096-987X
language eng
recordid cdi_osti_scitechconnect_1468621
source Wiley Online Library Journals Frontfile Complete
subjects ab initio
Boron
Boron nitride
Clusters
DFT
eigensolver
Eigenvalues
Molecular dynamics
Orbitals
Polyethylene
Polyethylenes
SCF
Sheets
Slicing
sparse
title SIESTA‐SIPs: Massively parallel spectrum‐slicing eigensolver for an ab initio molecular dynamics package
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A52%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SIESTA%E2%80%90SIPs:%20Massively%20parallel%20spectrum%E2%80%90slicing%20eigensolver%20for%20an%20ab%20initio%20molecular%20dynamics%20package&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Ke%C3%A7eli,%20Murat&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-08-15&rft.volume=39&rft.issue=22&rft.spage=1806&rft.epage=1814&rft.pages=1806-1814&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.25350&rft_dat=%3Cproquest_osti_%3E2092469771%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092469771&rft_id=info:pmid/30141534&rfr_iscdi=true