Sharp and Tunable Crystal/Fano‐Type Resonances Enabled by Out‐of‐Plane Dipolar Coupling in Plasmonic Nanopatch Arrays

Tuning resonance lineshapes of plasmonic structures is essential to create customized media with compelling optical properties for optimized light–matter interactions. The diversity of available metals and the variety of design architectures provide a rich portfolio for statically controlling the re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annalen der Physik 2018-10, Vol.530 (10), p.n/a
Hauptverfasser: Taghinejad, Mohammad, Taghinejad, Hossein, Malak, Sidney T., Moradinejad, Hesam, Woods, Eric V., Xu, Zihao, Liu, Yawei, Eftekhar, Ali A., Lian, Tianquan, Tsukruk, Vladimir V., Adibi, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Annalen der Physik
container_volume 530
creator Taghinejad, Mohammad
Taghinejad, Hossein
Malak, Sidney T.
Moradinejad, Hesam
Woods, Eric V.
Xu, Zihao
Liu, Yawei
Eftekhar, Ali A.
Lian, Tianquan
Tsukruk, Vladimir V.
Adibi, Ali
description Tuning resonance lineshapes of plasmonic structures is essential to create customized media with compelling optical properties for optimized light–matter interactions. The diversity of available metals and the variety of design architectures provide a rich portfolio for statically controlling the resonance lineshape. However, dynamic tuning of resonance attributes (e.g., the resonance wavelength and linewidth) are yet to be more expanded, especially when a narrow resonance linewidth is on demand. Here, using a plasmonic nanopatch array, sharp plasmonic crystal (PC) resonances are demonstrated across a wide spectral range of 230 nm, with full‐width at half‐maximum of only ≈6 nm. The combination of angle‐resolved ellipsometry and full‐wave simulations shows that diffractive coupling of out‐of‐plane electric dipoles is the principal contributor in the formation of such sharp PC resonances. In addition, the designed nanopatch PC supports a plasmonic Fabry–Pérot‐like resonance that can be interfered with the PC resonance to generate complex Fano‐type lineshapes. The coexistence of tunable resonance features renders the designed structures as a rich platform for applications seeking enhanced light–matter interactions and optical signal processing. Diffractive coupling of out‐of‐plane electric dipoles in plasmonic nanopatch arrays is employed to demonstrate exceptionally narrow plasmonic crystal resonances (full‐width at half‐maximum ≈ 6 nm). The combination of spectroscopic ellipsometry and full‐wave simulations shows accurate control over the resonance wavelength of the plasmonic crystal modes by controlling the in‐plane momentum of the excitation light via the angle of incidence.
doi_str_mv 10.1002/andp.201700395
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1467744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2120553605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3845-a49aa64a4b4a0f84b26ce7d89d657f27e05b55724874af26aa129c8352ae067a3</originalsourceid><addsrcrecordid>eNqFkc9O4zAQxq3VIm1VuHK2ds8tY8eOk2PVFlgJQQXlbE1cZxsU7KydCEVceASekSdZQ1e7Ry7z9_eNRvoIOWUwZwD8DN2um3NgCiAr5RcyYZKzWVYU5VcygTRMNYhv5CTGh9SCBA5cTMjz3R5DR5OcbgeHVWvpMoyxx_bsHJ1_e3ndjp2ltzZ6h87YSNcf1I5WI70Z-gT4OoVNi87SVdP5FgNd-qFrG_eLNo6mTXz0rjH0Oh3ssDd7uggBx3hMjmpsoz35m6fk_ny9XV7Orm4ufi4XVzOTFULOUJSIuUBRCYS6EBXPjVW7otzlUtVcWZCVlIqLQgmseY7IeGmKTHK0kCvMpuT74a6PfaOjaXpr9sY7Z02vmciVEiJBPw5QF_zvwcZeP_ghuPSX5oyDlFkOMlHzA2WCjzHYWnehecQwagb63Qj9boT-Z0QSlAfBU9Pa8RNaL65Xm__aPy3jjvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120553605</pqid></control><display><type>article</type><title>Sharp and Tunable Crystal/Fano‐Type Resonances Enabled by Out‐of‐Plane Dipolar Coupling in Plasmonic Nanopatch Arrays</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Taghinejad, Mohammad ; Taghinejad, Hossein ; Malak, Sidney T. ; Moradinejad, Hesam ; Woods, Eric V. ; Xu, Zihao ; Liu, Yawei ; Eftekhar, Ali A. ; Lian, Tianquan ; Tsukruk, Vladimir V. ; Adibi, Ali</creator><creatorcontrib>Taghinejad, Mohammad ; Taghinejad, Hossein ; Malak, Sidney T. ; Moradinejad, Hesam ; Woods, Eric V. ; Xu, Zihao ; Liu, Yawei ; Eftekhar, Ali A. ; Lian, Tianquan ; Tsukruk, Vladimir V. ; Adibi, Ali</creatorcontrib><description>Tuning resonance lineshapes of plasmonic structures is essential to create customized media with compelling optical properties for optimized light–matter interactions. The diversity of available metals and the variety of design architectures provide a rich portfolio for statically controlling the resonance lineshape. However, dynamic tuning of resonance attributes (e.g., the resonance wavelength and linewidth) are yet to be more expanded, especially when a narrow resonance linewidth is on demand. Here, using a plasmonic nanopatch array, sharp plasmonic crystal (PC) resonances are demonstrated across a wide spectral range of 230 nm, with full‐width at half‐maximum of only ≈6 nm. The combination of angle‐resolved ellipsometry and full‐wave simulations shows that diffractive coupling of out‐of‐plane electric dipoles is the principal contributor in the formation of such sharp PC resonances. In addition, the designed nanopatch PC supports a plasmonic Fabry–Pérot‐like resonance that can be interfered with the PC resonance to generate complex Fano‐type lineshapes. The coexistence of tunable resonance features renders the designed structures as a rich platform for applications seeking enhanced light–matter interactions and optical signal processing. Diffractive coupling of out‐of‐plane electric dipoles in plasmonic nanopatch arrays is employed to demonstrate exceptionally narrow plasmonic crystal resonances (full‐width at half‐maximum ≈ 6 nm). The combination of spectroscopic ellipsometry and full‐wave simulations shows accurate control over the resonance wavelength of the plasmonic crystal modes by controlling the in‐plane momentum of the excitation light via the angle of incidence.</description><identifier>ISSN: 0003-3804</identifier><identifier>EISSN: 1521-3889</identifier><identifier>DOI: 10.1002/andp.201700395</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Dipole interactions ; Electric dipoles ; Ellipsometry ; Fano resonances ; light–matter interactions ; Optical communication ; Optical properties ; out‐of‐plane dipoles ; plasmonic crystals ; Signal processing ; spectroscopic ellipsometry ; Tuning</subject><ispartof>Annalen der Physik, 2018-10, Vol.530 (10), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3845-a49aa64a4b4a0f84b26ce7d89d657f27e05b55724874af26aa129c8352ae067a3</citedby><cites>FETCH-LOGICAL-c3845-a49aa64a4b4a0f84b26ce7d89d657f27e05b55724874af26aa129c8352ae067a3</cites><orcidid>0000-0003-1005-9631 ; 0000000310059631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fandp.201700395$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fandp.201700395$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1467744$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Taghinejad, Mohammad</creatorcontrib><creatorcontrib>Taghinejad, Hossein</creatorcontrib><creatorcontrib>Malak, Sidney T.</creatorcontrib><creatorcontrib>Moradinejad, Hesam</creatorcontrib><creatorcontrib>Woods, Eric V.</creatorcontrib><creatorcontrib>Xu, Zihao</creatorcontrib><creatorcontrib>Liu, Yawei</creatorcontrib><creatorcontrib>Eftekhar, Ali A.</creatorcontrib><creatorcontrib>Lian, Tianquan</creatorcontrib><creatorcontrib>Tsukruk, Vladimir V.</creatorcontrib><creatorcontrib>Adibi, Ali</creatorcontrib><title>Sharp and Tunable Crystal/Fano‐Type Resonances Enabled by Out‐of‐Plane Dipolar Coupling in Plasmonic Nanopatch Arrays</title><title>Annalen der Physik</title><description>Tuning resonance lineshapes of plasmonic structures is essential to create customized media with compelling optical properties for optimized light–matter interactions. The diversity of available metals and the variety of design architectures provide a rich portfolio for statically controlling the resonance lineshape. However, dynamic tuning of resonance attributes (e.g., the resonance wavelength and linewidth) are yet to be more expanded, especially when a narrow resonance linewidth is on demand. Here, using a plasmonic nanopatch array, sharp plasmonic crystal (PC) resonances are demonstrated across a wide spectral range of 230 nm, with full‐width at half‐maximum of only ≈6 nm. The combination of angle‐resolved ellipsometry and full‐wave simulations shows that diffractive coupling of out‐of‐plane electric dipoles is the principal contributor in the formation of such sharp PC resonances. In addition, the designed nanopatch PC supports a plasmonic Fabry–Pérot‐like resonance that can be interfered with the PC resonance to generate complex Fano‐type lineshapes. The coexistence of tunable resonance features renders the designed structures as a rich platform for applications seeking enhanced light–matter interactions and optical signal processing. Diffractive coupling of out‐of‐plane electric dipoles in plasmonic nanopatch arrays is employed to demonstrate exceptionally narrow plasmonic crystal resonances (full‐width at half‐maximum ≈ 6 nm). The combination of spectroscopic ellipsometry and full‐wave simulations shows accurate control over the resonance wavelength of the plasmonic crystal modes by controlling the in‐plane momentum of the excitation light via the angle of incidence.</description><subject>Dipole interactions</subject><subject>Electric dipoles</subject><subject>Ellipsometry</subject><subject>Fano resonances</subject><subject>light–matter interactions</subject><subject>Optical communication</subject><subject>Optical properties</subject><subject>out‐of‐plane dipoles</subject><subject>plasmonic crystals</subject><subject>Signal processing</subject><subject>spectroscopic ellipsometry</subject><subject>Tuning</subject><issn>0003-3804</issn><issn>1521-3889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc9O4zAQxq3VIm1VuHK2ds8tY8eOk2PVFlgJQQXlbE1cZxsU7KydCEVceASekSdZQ1e7Ry7z9_eNRvoIOWUwZwD8DN2um3NgCiAr5RcyYZKzWVYU5VcygTRMNYhv5CTGh9SCBA5cTMjz3R5DR5OcbgeHVWvpMoyxx_bsHJ1_e3ndjp2ltzZ6h87YSNcf1I5WI70Z-gT4OoVNi87SVdP5FgNd-qFrG_eLNo6mTXz0rjH0Oh3ssDd7uggBx3hMjmpsoz35m6fk_ny9XV7Orm4ufi4XVzOTFULOUJSIuUBRCYS6EBXPjVW7otzlUtVcWZCVlIqLQgmseY7IeGmKTHK0kCvMpuT74a6PfaOjaXpr9sY7Z02vmciVEiJBPw5QF_zvwcZeP_ghuPSX5oyDlFkOMlHzA2WCjzHYWnehecQwagb63Qj9boT-Z0QSlAfBU9Pa8RNaL65Xm__aPy3jjvQ</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Taghinejad, Mohammad</creator><creator>Taghinejad, Hossein</creator><creator>Malak, Sidney T.</creator><creator>Moradinejad, Hesam</creator><creator>Woods, Eric V.</creator><creator>Xu, Zihao</creator><creator>Liu, Yawei</creator><creator>Eftekhar, Ali A.</creator><creator>Lian, Tianquan</creator><creator>Tsukruk, Vladimir V.</creator><creator>Adibi, Ali</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1005-9631</orcidid><orcidid>https://orcid.org/0000000310059631</orcidid></search><sort><creationdate>201810</creationdate><title>Sharp and Tunable Crystal/Fano‐Type Resonances Enabled by Out‐of‐Plane Dipolar Coupling in Plasmonic Nanopatch Arrays</title><author>Taghinejad, Mohammad ; Taghinejad, Hossein ; Malak, Sidney T. ; Moradinejad, Hesam ; Woods, Eric V. ; Xu, Zihao ; Liu, Yawei ; Eftekhar, Ali A. ; Lian, Tianquan ; Tsukruk, Vladimir V. ; Adibi, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3845-a49aa64a4b4a0f84b26ce7d89d657f27e05b55724874af26aa129c8352ae067a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Dipole interactions</topic><topic>Electric dipoles</topic><topic>Ellipsometry</topic><topic>Fano resonances</topic><topic>light–matter interactions</topic><topic>Optical communication</topic><topic>Optical properties</topic><topic>out‐of‐plane dipoles</topic><topic>plasmonic crystals</topic><topic>Signal processing</topic><topic>spectroscopic ellipsometry</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taghinejad, Mohammad</creatorcontrib><creatorcontrib>Taghinejad, Hossein</creatorcontrib><creatorcontrib>Malak, Sidney T.</creatorcontrib><creatorcontrib>Moradinejad, Hesam</creatorcontrib><creatorcontrib>Woods, Eric V.</creatorcontrib><creatorcontrib>Xu, Zihao</creatorcontrib><creatorcontrib>Liu, Yawei</creatorcontrib><creatorcontrib>Eftekhar, Ali A.</creatorcontrib><creatorcontrib>Lian, Tianquan</creatorcontrib><creatorcontrib>Tsukruk, Vladimir V.</creatorcontrib><creatorcontrib>Adibi, Ali</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Annalen der Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taghinejad, Mohammad</au><au>Taghinejad, Hossein</au><au>Malak, Sidney T.</au><au>Moradinejad, Hesam</au><au>Woods, Eric V.</au><au>Xu, Zihao</au><au>Liu, Yawei</au><au>Eftekhar, Ali A.</au><au>Lian, Tianquan</au><au>Tsukruk, Vladimir V.</au><au>Adibi, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp and Tunable Crystal/Fano‐Type Resonances Enabled by Out‐of‐Plane Dipolar Coupling in Plasmonic Nanopatch Arrays</atitle><jtitle>Annalen der Physik</jtitle><date>2018-10</date><risdate>2018</risdate><volume>530</volume><issue>10</issue><epage>n/a</epage><issn>0003-3804</issn><eissn>1521-3889</eissn><abstract>Tuning resonance lineshapes of plasmonic structures is essential to create customized media with compelling optical properties for optimized light–matter interactions. The diversity of available metals and the variety of design architectures provide a rich portfolio for statically controlling the resonance lineshape. However, dynamic tuning of resonance attributes (e.g., the resonance wavelength and linewidth) are yet to be more expanded, especially when a narrow resonance linewidth is on demand. Here, using a plasmonic nanopatch array, sharp plasmonic crystal (PC) resonances are demonstrated across a wide spectral range of 230 nm, with full‐width at half‐maximum of only ≈6 nm. The combination of angle‐resolved ellipsometry and full‐wave simulations shows that diffractive coupling of out‐of‐plane electric dipoles is the principal contributor in the formation of such sharp PC resonances. In addition, the designed nanopatch PC supports a plasmonic Fabry–Pérot‐like resonance that can be interfered with the PC resonance to generate complex Fano‐type lineshapes. The coexistence of tunable resonance features renders the designed structures as a rich platform for applications seeking enhanced light–matter interactions and optical signal processing. Diffractive coupling of out‐of‐plane electric dipoles in plasmonic nanopatch arrays is employed to demonstrate exceptionally narrow plasmonic crystal resonances (full‐width at half‐maximum ≈ 6 nm). The combination of spectroscopic ellipsometry and full‐wave simulations shows accurate control over the resonance wavelength of the plasmonic crystal modes by controlling the in‐plane momentum of the excitation light via the angle of incidence.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/andp.201700395</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1005-9631</orcidid><orcidid>https://orcid.org/0000000310059631</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-3804
ispartof Annalen der Physik, 2018-10, Vol.530 (10), p.n/a
issn 0003-3804
1521-3889
language eng
recordid cdi_osti_scitechconnect_1467744
source Wiley Online Library Journals Frontfile Complete
subjects Dipole interactions
Electric dipoles
Ellipsometry
Fano resonances
light–matter interactions
Optical communication
Optical properties
out‐of‐plane dipoles
plasmonic crystals
Signal processing
spectroscopic ellipsometry
Tuning
title Sharp and Tunable Crystal/Fano‐Type Resonances Enabled by Out‐of‐Plane Dipolar Coupling in Plasmonic Nanopatch Arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A31%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20and%20Tunable%20Crystal/Fano%E2%80%90Type%20Resonances%20Enabled%20by%20Out%E2%80%90of%E2%80%90Plane%20Dipolar%20Coupling%20in%20Plasmonic%20Nanopatch%20Arrays&rft.jtitle=Annalen%20der%20Physik&rft.au=Taghinejad,%20Mohammad&rft.date=2018-10&rft.volume=530&rft.issue=10&rft.epage=n/a&rft.issn=0003-3804&rft.eissn=1521-3889&rft_id=info:doi/10.1002/andp.201700395&rft_dat=%3Cproquest_osti_%3E2120553605%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2120553605&rft_id=info:pmid/&rfr_iscdi=true