Next generation molten NaI batteries for grid scale energy storage
Robust, safe, and reliable grid-scale energy storage continues to be a priority for improved energy surety, expanded integration of renewable energy, and greater system agility required to meet modern dynamic and evolving electrical energy demands. We describe here a new sodium-based battery based o...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2017-08, Vol.360 (C), p.569-574 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 574 |
---|---|
container_issue | C |
container_start_page | 569 |
container_title | Journal of power sources |
container_volume | 360 |
creator | Small, Leo J. Eccleston, Alexis Lamb, Joshua Read, Andrew C. Robins, Matthew Meaders, Thomas Ingersoll, David Clem, Paul G. Bhavaraju, Sai Spoerke, Erik D. |
description | Robust, safe, and reliable grid-scale energy storage continues to be a priority for improved energy surety, expanded integration of renewable energy, and greater system agility required to meet modern dynamic and evolving electrical energy demands. We describe here a new sodium-based battery based on a molten sodium anode, a sodium iodide/aluminum chloride (NaI/AlCl3) cathode, and a high conductivity NaSICON (Na1+xZr2SixP3−xO12) ceramic separator. This NaI battery operates at intermediate temperatures (120–180 °C) and boasts an energy density of >150 Wh kg−1. The energy-dense NaI-AlCl3 ionic liquid catholyte avoids lifetime-limiting plating and intercalation reactions, and the use of earth-abundant elements minimizes materials costs and eliminates economic uncertainties associated with lithium metal. Moreover, the inherent safety of this system under internal mechanical failure is characterized by negligible heat or gas production and benign reaction products (Al, NaCl). Scalability in design is exemplified through evolution from 0.85 to 10 Ah (28 Wh) form factors, displaying lifetime average Coulombic efficiencies of 99.45% and energy efficiencies of 81.96% over dynamic testing lasting >3000 h. This demonstration promises a safe, cost-effective, and long-lifetime technology as an attractive candidate for grid scale storage.
•NaSICON separator enables molten sodium battery operation over 120–180 °C.•NaI-AlCl3 catholyte provides system density of >150 Wh kg−1.•Coulombic and energy efficiencies up to 99.45% and 81.96% over 0.85–10 Ah scale.•No detectable gas evolution or exotherm observed upon simulated internal failure. |
doi_str_mv | 10.1016/j.jpowsour.2017.06.038 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1465804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775317308194</els_id><sourcerecordid>S0378775317308194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-8a2de9c98f3c2c65f4e375bb011b87539453044aeee12f5da900054bd472f9133</originalsourceid><addsrcrecordid>eNqFkE1PwyAYx4nRxDn9CoZ4b4UCpb2pi9Mly7zomVD6UGm2sgC-7NvbZnr29Fz-b88PoWtKckpoedvn_d5_Rf8R8oJQmZMyJ6w6QTNaSZYVUohTNCNMVpmUgp2jixh7QgilkszQwwa-E-5ggKCT8wPe-W2CAW_0Cjc6JQgOIrY-4C64Fkejt4AndXfAMfmgO7hEZ1ZvI1z93jl6Wz6-Lp6z9cvTanG_zgwvypRVumihNnVlmSlMKSwHJkXTjEOaahxWc8EI5xoAaGFFq-txpOBNy2Vha8rYHN0cc31MTkXjEph344cBTFKUl6IifBSVR5EJPsYAVu2D2-lwUJSoCZfq1R8uNeFSpFQjrtF4dzTC-MKngzA1wGCgdWEqaL37L-IHbsh3HA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Next generation molten NaI batteries for grid scale energy storage</title><source>Elsevier ScienceDirect Journals</source><creator>Small, Leo J. ; Eccleston, Alexis ; Lamb, Joshua ; Read, Andrew C. ; Robins, Matthew ; Meaders, Thomas ; Ingersoll, David ; Clem, Paul G. ; Bhavaraju, Sai ; Spoerke, Erik D.</creator><creatorcontrib>Small, Leo J. ; Eccleston, Alexis ; Lamb, Joshua ; Read, Andrew C. ; Robins, Matthew ; Meaders, Thomas ; Ingersoll, David ; Clem, Paul G. ; Bhavaraju, Sai ; Spoerke, Erik D. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Robust, safe, and reliable grid-scale energy storage continues to be a priority for improved energy surety, expanded integration of renewable energy, and greater system agility required to meet modern dynamic and evolving electrical energy demands. We describe here a new sodium-based battery based on a molten sodium anode, a sodium iodide/aluminum chloride (NaI/AlCl3) cathode, and a high conductivity NaSICON (Na1+xZr2SixP3−xO12) ceramic separator. This NaI battery operates at intermediate temperatures (120–180 °C) and boasts an energy density of >150 Wh kg−1. The energy-dense NaI-AlCl3 ionic liquid catholyte avoids lifetime-limiting plating and intercalation reactions, and the use of earth-abundant elements minimizes materials costs and eliminates economic uncertainties associated with lithium metal. Moreover, the inherent safety of this system under internal mechanical failure is characterized by negligible heat or gas production and benign reaction products (Al, NaCl). Scalability in design is exemplified through evolution from 0.85 to 10 Ah (28 Wh) form factors, displaying lifetime average Coulombic efficiencies of 99.45% and energy efficiencies of 81.96% over dynamic testing lasting >3000 h. This demonstration promises a safe, cost-effective, and long-lifetime technology as an attractive candidate for grid scale storage.
•NaSICON separator enables molten sodium battery operation over 120–180 °C.•NaI-AlCl3 catholyte provides system density of >150 Wh kg−1.•Coulombic and energy efficiencies up to 99.45% and 81.96% over 0.85–10 Ah scale.•No detectable gas evolution or exotherm observed upon simulated internal failure.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2017.06.038</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>ENERGY STORAGE ; Grid scale ; Ion conductor ; NaSICON ; Sodium battery</subject><ispartof>Journal of power sources, 2017-08, Vol.360 (C), p.569-574</ispartof><rights>2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-8a2de9c98f3c2c65f4e375bb011b87539453044aeee12f5da900054bd472f9133</citedby><cites>FETCH-LOGICAL-c426t-8a2de9c98f3c2c65f4e375bb011b87539453044aeee12f5da900054bd472f9133</cites><orcidid>0000-0002-1016-4258 ; 0000-0003-0404-6287 ; 0000000304046287 ; 0000000210164258</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775317308194$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1465804$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Small, Leo J.</creatorcontrib><creatorcontrib>Eccleston, Alexis</creatorcontrib><creatorcontrib>Lamb, Joshua</creatorcontrib><creatorcontrib>Read, Andrew C.</creatorcontrib><creatorcontrib>Robins, Matthew</creatorcontrib><creatorcontrib>Meaders, Thomas</creatorcontrib><creatorcontrib>Ingersoll, David</creatorcontrib><creatorcontrib>Clem, Paul G.</creatorcontrib><creatorcontrib>Bhavaraju, Sai</creatorcontrib><creatorcontrib>Spoerke, Erik D.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Next generation molten NaI batteries for grid scale energy storage</title><title>Journal of power sources</title><description>Robust, safe, and reliable grid-scale energy storage continues to be a priority for improved energy surety, expanded integration of renewable energy, and greater system agility required to meet modern dynamic and evolving electrical energy demands. We describe here a new sodium-based battery based on a molten sodium anode, a sodium iodide/aluminum chloride (NaI/AlCl3) cathode, and a high conductivity NaSICON (Na1+xZr2SixP3−xO12) ceramic separator. This NaI battery operates at intermediate temperatures (120–180 °C) and boasts an energy density of >150 Wh kg−1. The energy-dense NaI-AlCl3 ionic liquid catholyte avoids lifetime-limiting plating and intercalation reactions, and the use of earth-abundant elements minimizes materials costs and eliminates economic uncertainties associated with lithium metal. Moreover, the inherent safety of this system under internal mechanical failure is characterized by negligible heat or gas production and benign reaction products (Al, NaCl). Scalability in design is exemplified through evolution from 0.85 to 10 Ah (28 Wh) form factors, displaying lifetime average Coulombic efficiencies of 99.45% and energy efficiencies of 81.96% over dynamic testing lasting >3000 h. This demonstration promises a safe, cost-effective, and long-lifetime technology as an attractive candidate for grid scale storage.
•NaSICON separator enables molten sodium battery operation over 120–180 °C.•NaI-AlCl3 catholyte provides system density of >150 Wh kg−1.•Coulombic and energy efficiencies up to 99.45% and 81.96% over 0.85–10 Ah scale.•No detectable gas evolution or exotherm observed upon simulated internal failure.</description><subject>ENERGY STORAGE</subject><subject>Grid scale</subject><subject>Ion conductor</subject><subject>NaSICON</subject><subject>Sodium battery</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwyAYx4nRxDn9CoZ4b4UCpb2pi9Mly7zomVD6UGm2sgC-7NvbZnr29Fz-b88PoWtKckpoedvn_d5_Rf8R8oJQmZMyJ6w6QTNaSZYVUohTNCNMVpmUgp2jixh7QgilkszQwwa-E-5ggKCT8wPe-W2CAW_0Cjc6JQgOIrY-4C64Fkejt4AndXfAMfmgO7hEZ1ZvI1z93jl6Wz6-Lp6z9cvTanG_zgwvypRVumihNnVlmSlMKSwHJkXTjEOaahxWc8EI5xoAaGFFq-txpOBNy2Vha8rYHN0cc31MTkXjEph344cBTFKUl6IifBSVR5EJPsYAVu2D2-lwUJSoCZfq1R8uNeFSpFQjrtF4dzTC-MKngzA1wGCgdWEqaL37L-IHbsh3HA</recordid><startdate>20170831</startdate><enddate>20170831</enddate><creator>Small, Leo J.</creator><creator>Eccleston, Alexis</creator><creator>Lamb, Joshua</creator><creator>Read, Andrew C.</creator><creator>Robins, Matthew</creator><creator>Meaders, Thomas</creator><creator>Ingersoll, David</creator><creator>Clem, Paul G.</creator><creator>Bhavaraju, Sai</creator><creator>Spoerke, Erik D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1016-4258</orcidid><orcidid>https://orcid.org/0000-0003-0404-6287</orcidid><orcidid>https://orcid.org/0000000304046287</orcidid><orcidid>https://orcid.org/0000000210164258</orcidid></search><sort><creationdate>20170831</creationdate><title>Next generation molten NaI batteries for grid scale energy storage</title><author>Small, Leo J. ; Eccleston, Alexis ; Lamb, Joshua ; Read, Andrew C. ; Robins, Matthew ; Meaders, Thomas ; Ingersoll, David ; Clem, Paul G. ; Bhavaraju, Sai ; Spoerke, Erik D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-8a2de9c98f3c2c65f4e375bb011b87539453044aeee12f5da900054bd472f9133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ENERGY STORAGE</topic><topic>Grid scale</topic><topic>Ion conductor</topic><topic>NaSICON</topic><topic>Sodium battery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Small, Leo J.</creatorcontrib><creatorcontrib>Eccleston, Alexis</creatorcontrib><creatorcontrib>Lamb, Joshua</creatorcontrib><creatorcontrib>Read, Andrew C.</creatorcontrib><creatorcontrib>Robins, Matthew</creatorcontrib><creatorcontrib>Meaders, Thomas</creatorcontrib><creatorcontrib>Ingersoll, David</creatorcontrib><creatorcontrib>Clem, Paul G.</creatorcontrib><creatorcontrib>Bhavaraju, Sai</creatorcontrib><creatorcontrib>Spoerke, Erik D.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Small, Leo J.</au><au>Eccleston, Alexis</au><au>Lamb, Joshua</au><au>Read, Andrew C.</au><au>Robins, Matthew</au><au>Meaders, Thomas</au><au>Ingersoll, David</au><au>Clem, Paul G.</au><au>Bhavaraju, Sai</au><au>Spoerke, Erik D.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Next generation molten NaI batteries for grid scale energy storage</atitle><jtitle>Journal of power sources</jtitle><date>2017-08-31</date><risdate>2017</risdate><volume>360</volume><issue>C</issue><spage>569</spage><epage>574</epage><pages>569-574</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><abstract>Robust, safe, and reliable grid-scale energy storage continues to be a priority for improved energy surety, expanded integration of renewable energy, and greater system agility required to meet modern dynamic and evolving electrical energy demands. We describe here a new sodium-based battery based on a molten sodium anode, a sodium iodide/aluminum chloride (NaI/AlCl3) cathode, and a high conductivity NaSICON (Na1+xZr2SixP3−xO12) ceramic separator. This NaI battery operates at intermediate temperatures (120–180 °C) and boasts an energy density of >150 Wh kg−1. The energy-dense NaI-AlCl3 ionic liquid catholyte avoids lifetime-limiting plating and intercalation reactions, and the use of earth-abundant elements minimizes materials costs and eliminates economic uncertainties associated with lithium metal. Moreover, the inherent safety of this system under internal mechanical failure is characterized by negligible heat or gas production and benign reaction products (Al, NaCl). Scalability in design is exemplified through evolution from 0.85 to 10 Ah (28 Wh) form factors, displaying lifetime average Coulombic efficiencies of 99.45% and energy efficiencies of 81.96% over dynamic testing lasting >3000 h. This demonstration promises a safe, cost-effective, and long-lifetime technology as an attractive candidate for grid scale storage.
•NaSICON separator enables molten sodium battery operation over 120–180 °C.•NaI-AlCl3 catholyte provides system density of >150 Wh kg−1.•Coulombic and energy efficiencies up to 99.45% and 81.96% over 0.85–10 Ah scale.•No detectable gas evolution or exotherm observed upon simulated internal failure.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2017.06.038</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1016-4258</orcidid><orcidid>https://orcid.org/0000-0003-0404-6287</orcidid><orcidid>https://orcid.org/0000000304046287</orcidid><orcidid>https://orcid.org/0000000210164258</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2017-08, Vol.360 (C), p.569-574 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_osti_scitechconnect_1465804 |
source | Elsevier ScienceDirect Journals |
subjects | ENERGY STORAGE Grid scale Ion conductor NaSICON Sodium battery |
title | Next generation molten NaI batteries for grid scale energy storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Next%20generation%20molten%20NaI%20batteries%20for%20grid%20scale%20energy%20storage&rft.jtitle=Journal%20of%20power%20sources&rft.au=Small,%20Leo%20J.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2017-08-31&rft.volume=360&rft.issue=C&rft.spage=569&rft.epage=574&rft.pages=569-574&rft.issn=0378-7753&rft.eissn=1873-2755&rft_id=info:doi/10.1016/j.jpowsour.2017.06.038&rft_dat=%3Celsevier_osti_%3ES0378775317308194%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378775317308194&rfr_iscdi=true |