Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction

The reduction of carbon dioxide to renewable fuels and feedstocks offers opportunities for large-scale, long-term energy storage. The synthesis of efficient CO 2 reduction electrocatalysts with high C2:C1 selectivity remains a field of intense interest. Here we present electro-redeposition, the diss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature catalysis 2018-01, Vol.1 (2), p.103-110
Hauptverfasser: De Luna, Phil, Quintero-Bermudez, Rafael, Dinh, Cao-Thang, Ross, Michael B., Bushuyev, Oleksandr S., Todorović, Petar, Regier, Tom, Kelley, Shana O., Yang, Peidong, Sargent, Edward H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue 2
container_start_page 103
container_title Nature catalysis
container_volume 1
creator De Luna, Phil
Quintero-Bermudez, Rafael
Dinh, Cao-Thang
Ross, Michael B.
Bushuyev, Oleksandr S.
Todorović, Petar
Regier, Tom
Kelley, Shana O.
Yang, Peidong
Sargent, Edward H.
description The reduction of carbon dioxide to renewable fuels and feedstocks offers opportunities for large-scale, long-term energy storage. The synthesis of efficient CO 2 reduction electrocatalysts with high C2:C1 selectivity remains a field of intense interest. Here we present electro-redeposition, the dissolution and redeposition of copper from a sol–gel, to enhance copper catalysts in terms of their morphology, oxidation state and consequent performance. We utilized in situ soft X-ray absorption spectroscopy to track the oxidation state of copper under CO 2 reduction conditions with time resolution. The sol–gel material slows the electrochemical reduction of copper, enabling control over nanoscale morphology and the stabilization of Cu + at negative potentials. CO 2 reduction experiments, in situ X-ray spectroscopy and density functional theory simulations revealed the beneficial interplay between sharp morphologies and Cu + oxidation state. The catalyst exhibits a partial ethylene current density of 160 mA cm –2 (−1.0 V versus reversible hydrogen electrode) and an ethylene/methane ratio of 200. Catalysts that can selectively reduce carbon dioxide to C2+ products are attractive for the generation of more complex and useful chemicals. Here, an electro-redeposited copper catalyst is shown to provide excellent selectivity and high current density for ethylene formation. Detailed characterization and theory link the performance to the catalyst morphology.
doi_str_mv 10.1038/s41929-017-0018-9
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1465700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1038_s41929_017_0018_9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-18c1e2f9148435d77ad6c3e65101949f36e3c90ce719cc42640fe01bc21924333</originalsourceid><addsrcrecordid>eNp9kE1PAyEURYnRxKb2B7gj7lHewHywNI1fSRM3uiaUedPSTIcGqLH_XqbjwpUrCJx7894h5Bb4PXDRPEQJqlCMQ804h4apCzIryoIzgLK5_HO_JosYdzxDSsiGVzPSL00y_Skmij3aFDwL2OLBR5ecH6j1Q37rI937cNj63m9O1Awt9d-uNWciJpOQdj7QeG5wX0itCev81boRQ5obj3aEb8hVZ_qIi99zTj6fnz6Wr2z1_vK2fFwxKwuZGDQWsOgUyEaKsq1r01ZWYFVCnluqTlQorOIWa1A2RyrJO-SwtkXWIIUQc3I39fqYnI7WJbTbvMqQ59Mgq7LmPEMwQTb4GAN2-hDc3oSTBq5HrXrSqrNWPWrVKmeKKRMzO2ww6J0_hiHv8k_oBxo4fBY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction</title><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>De Luna, Phil ; Quintero-Bermudez, Rafael ; Dinh, Cao-Thang ; Ross, Michael B. ; Bushuyev, Oleksandr S. ; Todorović, Petar ; Regier, Tom ; Kelley, Shana O. ; Yang, Peidong ; Sargent, Edward H.</creator><creatorcontrib>De Luna, Phil ; Quintero-Bermudez, Rafael ; Dinh, Cao-Thang ; Ross, Michael B. ; Bushuyev, Oleksandr S. ; Todorović, Petar ; Regier, Tom ; Kelley, Shana O. ; Yang, Peidong ; Sargent, Edward H. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>The reduction of carbon dioxide to renewable fuels and feedstocks offers opportunities for large-scale, long-term energy storage. The synthesis of efficient CO 2 reduction electrocatalysts with high C2:C1 selectivity remains a field of intense interest. Here we present electro-redeposition, the dissolution and redeposition of copper from a sol–gel, to enhance copper catalysts in terms of their morphology, oxidation state and consequent performance. We utilized in situ soft X-ray absorption spectroscopy to track the oxidation state of copper under CO 2 reduction conditions with time resolution. The sol–gel material slows the electrochemical reduction of copper, enabling control over nanoscale morphology and the stabilization of Cu + at negative potentials. CO 2 reduction experiments, in situ X-ray spectroscopy and density functional theory simulations revealed the beneficial interplay between sharp morphologies and Cu + oxidation state. The catalyst exhibits a partial ethylene current density of 160 mA cm –2 (−1.0 V versus reversible hydrogen electrode) and an ethylene/methane ratio of 200. Catalysts that can selectively reduce carbon dioxide to C2+ products are attractive for the generation of more complex and useful chemicals. Here, an electro-redeposited copper catalyst is shown to provide excellent selectivity and high current density for ethylene formation. Detailed characterization and theory link the performance to the catalyst morphology.</description><identifier>ISSN: 2520-1158</identifier><identifier>EISSN: 2520-1158</identifier><identifier>DOI: 10.1038/s41929-017-0018-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/886 ; 639/4077 ; 639/638/440/527 ; 639/638/77/887 ; 639/925/357 ; Catalysis ; Chemistry ; Chemistry and Materials Science ; electrocatalysis ; energy science and technology ; ENERGY STORAGE ; heterogeneous catalysis ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; nanoscale materials ; optical spectroscopy</subject><ispartof>Nature catalysis, 2018-01, Vol.1 (2), p.103-110</ispartof><rights>The Author(s) 2017, under exclusive licence to Macmillan Publishers Ltd, part of Springer Nature 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-18c1e2f9148435d77ad6c3e65101949f36e3c90ce719cc42640fe01bc21924333</citedby><cites>FETCH-LOGICAL-c424t-18c1e2f9148435d77ad6c3e65101949f36e3c90ce719cc42640fe01bc21924333</cites><orcidid>0000-0002-2511-0594 ; 0000-0002-7729-8816 ; 0000000225110594 ; 0000000277298816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41929-017-0018-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41929-017-0018-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1465700$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>De Luna, Phil</creatorcontrib><creatorcontrib>Quintero-Bermudez, Rafael</creatorcontrib><creatorcontrib>Dinh, Cao-Thang</creatorcontrib><creatorcontrib>Ross, Michael B.</creatorcontrib><creatorcontrib>Bushuyev, Oleksandr S.</creatorcontrib><creatorcontrib>Todorović, Petar</creatorcontrib><creatorcontrib>Regier, Tom</creatorcontrib><creatorcontrib>Kelley, Shana O.</creatorcontrib><creatorcontrib>Yang, Peidong</creatorcontrib><creatorcontrib>Sargent, Edward H.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction</title><title>Nature catalysis</title><addtitle>Nat Catal</addtitle><description>The reduction of carbon dioxide to renewable fuels and feedstocks offers opportunities for large-scale, long-term energy storage. The synthesis of efficient CO 2 reduction electrocatalysts with high C2:C1 selectivity remains a field of intense interest. Here we present electro-redeposition, the dissolution and redeposition of copper from a sol–gel, to enhance copper catalysts in terms of their morphology, oxidation state and consequent performance. We utilized in situ soft X-ray absorption spectroscopy to track the oxidation state of copper under CO 2 reduction conditions with time resolution. The sol–gel material slows the electrochemical reduction of copper, enabling control over nanoscale morphology and the stabilization of Cu + at negative potentials. CO 2 reduction experiments, in situ X-ray spectroscopy and density functional theory simulations revealed the beneficial interplay between sharp morphologies and Cu + oxidation state. The catalyst exhibits a partial ethylene current density of 160 mA cm –2 (−1.0 V versus reversible hydrogen electrode) and an ethylene/methane ratio of 200. Catalysts that can selectively reduce carbon dioxide to C2+ products are attractive for the generation of more complex and useful chemicals. Here, an electro-redeposited copper catalyst is shown to provide excellent selectivity and high current density for ethylene formation. Detailed characterization and theory link the performance to the catalyst morphology.</description><subject>639/301/299/886</subject><subject>639/4077</subject><subject>639/638/440/527</subject><subject>639/638/77/887</subject><subject>639/925/357</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>electrocatalysis</subject><subject>energy science and technology</subject><subject>ENERGY STORAGE</subject><subject>heterogeneous catalysis</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>nanoscale materials</subject><subject>optical spectroscopy</subject><issn>2520-1158</issn><issn>2520-1158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEURYnRxKb2B7gj7lHewHywNI1fSRM3uiaUedPSTIcGqLH_XqbjwpUrCJx7894h5Bb4PXDRPEQJqlCMQ804h4apCzIryoIzgLK5_HO_JosYdzxDSsiGVzPSL00y_Skmij3aFDwL2OLBR5ecH6j1Q37rI937cNj63m9O1Awt9d-uNWciJpOQdj7QeG5wX0itCev81boRQ5obj3aEb8hVZ_qIi99zTj6fnz6Wr2z1_vK2fFwxKwuZGDQWsOgUyEaKsq1r01ZWYFVCnluqTlQorOIWa1A2RyrJO-SwtkXWIIUQc3I39fqYnI7WJbTbvMqQ59Mgq7LmPEMwQTb4GAN2-hDc3oSTBq5HrXrSqrNWPWrVKmeKKRMzO2ww6J0_hiHv8k_oBxo4fBY</recordid><startdate>20180115</startdate><enddate>20180115</enddate><creator>De Luna, Phil</creator><creator>Quintero-Bermudez, Rafael</creator><creator>Dinh, Cao-Thang</creator><creator>Ross, Michael B.</creator><creator>Bushuyev, Oleksandr S.</creator><creator>Todorović, Petar</creator><creator>Regier, Tom</creator><creator>Kelley, Shana O.</creator><creator>Yang, Peidong</creator><creator>Sargent, Edward H.</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2511-0594</orcidid><orcidid>https://orcid.org/0000-0002-7729-8816</orcidid><orcidid>https://orcid.org/0000000225110594</orcidid><orcidid>https://orcid.org/0000000277298816</orcidid></search><sort><creationdate>20180115</creationdate><title>Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction</title><author>De Luna, Phil ; Quintero-Bermudez, Rafael ; Dinh, Cao-Thang ; Ross, Michael B. ; Bushuyev, Oleksandr S. ; Todorović, Petar ; Regier, Tom ; Kelley, Shana O. ; Yang, Peidong ; Sargent, Edward H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-18c1e2f9148435d77ad6c3e65101949f36e3c90ce719cc42640fe01bc21924333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/301/299/886</topic><topic>639/4077</topic><topic>639/638/440/527</topic><topic>639/638/77/887</topic><topic>639/925/357</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>electrocatalysis</topic><topic>energy science and technology</topic><topic>ENERGY STORAGE</topic><topic>heterogeneous catalysis</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>nanoscale materials</topic><topic>optical spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Luna, Phil</creatorcontrib><creatorcontrib>Quintero-Bermudez, Rafael</creatorcontrib><creatorcontrib>Dinh, Cao-Thang</creatorcontrib><creatorcontrib>Ross, Michael B.</creatorcontrib><creatorcontrib>Bushuyev, Oleksandr S.</creatorcontrib><creatorcontrib>Todorović, Petar</creatorcontrib><creatorcontrib>Regier, Tom</creatorcontrib><creatorcontrib>Kelley, Shana O.</creatorcontrib><creatorcontrib>Yang, Peidong</creatorcontrib><creatorcontrib>Sargent, Edward H.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Luna, Phil</au><au>Quintero-Bermudez, Rafael</au><au>Dinh, Cao-Thang</au><au>Ross, Michael B.</au><au>Bushuyev, Oleksandr S.</au><au>Todorović, Petar</au><au>Regier, Tom</au><au>Kelley, Shana O.</au><au>Yang, Peidong</au><au>Sargent, Edward H.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction</atitle><jtitle>Nature catalysis</jtitle><stitle>Nat Catal</stitle><date>2018-01-15</date><risdate>2018</risdate><volume>1</volume><issue>2</issue><spage>103</spage><epage>110</epage><pages>103-110</pages><issn>2520-1158</issn><eissn>2520-1158</eissn><abstract>The reduction of carbon dioxide to renewable fuels and feedstocks offers opportunities for large-scale, long-term energy storage. The synthesis of efficient CO 2 reduction electrocatalysts with high C2:C1 selectivity remains a field of intense interest. Here we present electro-redeposition, the dissolution and redeposition of copper from a sol–gel, to enhance copper catalysts in terms of their morphology, oxidation state and consequent performance. We utilized in situ soft X-ray absorption spectroscopy to track the oxidation state of copper under CO 2 reduction conditions with time resolution. The sol–gel material slows the electrochemical reduction of copper, enabling control over nanoscale morphology and the stabilization of Cu + at negative potentials. CO 2 reduction experiments, in situ X-ray spectroscopy and density functional theory simulations revealed the beneficial interplay between sharp morphologies and Cu + oxidation state. The catalyst exhibits a partial ethylene current density of 160 mA cm –2 (−1.0 V versus reversible hydrogen electrode) and an ethylene/methane ratio of 200. Catalysts that can selectively reduce carbon dioxide to C2+ products are attractive for the generation of more complex and useful chemicals. Here, an electro-redeposited copper catalyst is shown to provide excellent selectivity and high current density for ethylene formation. Detailed characterization and theory link the performance to the catalyst morphology.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41929-017-0018-9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2511-0594</orcidid><orcidid>https://orcid.org/0000-0002-7729-8816</orcidid><orcidid>https://orcid.org/0000000225110594</orcidid><orcidid>https://orcid.org/0000000277298816</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2520-1158
ispartof Nature catalysis, 2018-01, Vol.1 (2), p.103-110
issn 2520-1158
2520-1158
language eng
recordid cdi_osti_scitechconnect_1465700
source Nature; Springer Nature - Complete Springer Journals
subjects 639/301/299/886
639/4077
639/638/440/527
639/638/77/887
639/925/357
Catalysis
Chemistry
Chemistry and Materials Science
electrocatalysis
energy science and technology
ENERGY STORAGE
heterogeneous catalysis
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
nanoscale materials
optical spectroscopy
title Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalyst%20electro-redeposition%20controls%20morphology%20and%20oxidation%20state%20for%20selective%20carbon%20dioxide%20reduction&rft.jtitle=Nature%20catalysis&rft.au=De%20Luna,%20Phil&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2018-01-15&rft.volume=1&rft.issue=2&rft.spage=103&rft.epage=110&rft.pages=103-110&rft.issn=2520-1158&rft.eissn=2520-1158&rft_id=info:doi/10.1038/s41929-017-0018-9&rft_dat=%3Ccrossref_osti_%3E10_1038_s41929_017_0018_9%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true