Accelerated vortex dynamics across the magnetic 3D-to-2D crossover in disordered superconductors
Disorder can have remarkably disparate consequences in superconductors, driving superconductor–insulator transitions in ultrathin films by localizing electron pairs and boosting the supercurrent carrying capacity of thick films by localizing vortices (magnetic flux lines). Though the electronic 3D-t...
Gespeichert in:
Veröffentlicht in: | npj quantum materials 2018-08, Vol.3 (1), Article 37 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | npj quantum materials |
container_volume | 3 |
creator | Eley, Serena Willa, Roland Miura, Masashi Sato, Michio Leroux, Maxime Henry, Michael David Civale, Leonardo |
description | Disorder can have remarkably disparate consequences in superconductors, driving superconductor–insulator transitions in ultrathin films by localizing electron pairs and boosting the supercurrent carrying capacity of thick films by localizing vortices (magnetic flux lines). Though the electronic 3D-to-2D crossover at material thicknesses
d
~
ξ
(coherence length) is well studied, a similarly consequential magnetic crossover at
d
~
L
c
(pinning length) that should drastically alter material properties remains largely underexamined. According to collective pinning theory, vortex segments of length
L
c
bend to adjust to energy wells provided by point defects. Consequently, if
d
truncates
L
c
, a change from elastic to rigid vortex dynamics should increase the rate of thermally activated vortex motion
S
. Here, we characterize the dependence of
S
on sample thickness in Nb and cuprate films. The results for Nb are consistent with collective pinning theory, whereas creep in the cuprate is strongly influenced by sparse large precipitates. We leverage the sensitivity of
S
to
d
to determine the generally unknown scale
L
c
, establishing a new route for extracting pinning lengths in heterogeneously disordered materials.
Superconductors: Vortices and the role of defects
Disorder influences the properties of superconductors, as defects can pin vortices. Thermal energy unpins the vortices, whose creep rate is expected to depend on sample thickness, in particular when the thickness is reduced to below the pinning length. However, the description of pinning in systems with different types of defects is still a matter of debate. Serena Eley at Los Alamos National Laboratory and colleagues systematically studied the thickness dependence of the creep rate of vortices in films of Nb (superconductive critical temperature T
c
= 9.2 K) and of a cuprate material (T
c
= 92 K). The results unveil the different role of defects in pinning vortices in these materials and show that this approach provides a means of directly accessing the pinning length in heterogeneously disordered materials, such as cuprates. |
doi_str_mv | 10.1038/s41535-018-0108-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1465503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389711049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-1f4d5346b015adb23d2200449cdfc07d516514c9e2726b6548f08e4f84e0125d3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhhdRsNT-AG9Bz6uZfGyzx9L6BQUveo7bZLbd0m5qki3235t2Bb14GGZgnvdl5s2ya6B3QLm6DwIklzkFlYqqHM6yAePlOBeFUOd_5stsFMKaUsoAlCiKQfYxMQY36KuIluydj_hF7KGtto0JpDLehUDiCsm2WrYYG0P4LI8uZzNy2rk9etK0xDbBeYs-mYRuh9641nYmOh-usou62gQc_fRh9v748DZ9zuevTy_TyTw3QrKYQy2s5KJYUJCVXTBuGaNUiNLY2tCxlVBIEKZENmbFopBC1VShqJVACkxaPsxuel8XYqODaSKaVTqjRRM1iEJKyhN020M77z47DFGvXefbdJdmXJVjACrKREFPnV70WOudb7aVP2ig-hi47gPXKXB9DFxD0rBeExLbLtH_Ov8v-gaG0IIL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389711049</pqid></control><display><type>article</type><title>Accelerated vortex dynamics across the magnetic 3D-to-2D crossover in disordered superconductors</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Eley, Serena ; Willa, Roland ; Miura, Masashi ; Sato, Michio ; Leroux, Maxime ; Henry, Michael David ; Civale, Leonardo</creator><creatorcontrib>Eley, Serena ; Willa, Roland ; Miura, Masashi ; Sato, Michio ; Leroux, Maxime ; Henry, Michael David ; Civale, Leonardo ; Argonne National Laboratory (ANL), Argonne, IL (United States) ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Disorder can have remarkably disparate consequences in superconductors, driving superconductor–insulator transitions in ultrathin films by localizing electron pairs and boosting the supercurrent carrying capacity of thick films by localizing vortices (magnetic flux lines). Though the electronic 3D-to-2D crossover at material thicknesses
d
~
ξ
(coherence length) is well studied, a similarly consequential magnetic crossover at
d
~
L
c
(pinning length) that should drastically alter material properties remains largely underexamined. According to collective pinning theory, vortex segments of length
L
c
bend to adjust to energy wells provided by point defects. Consequently, if
d
truncates
L
c
, a change from elastic to rigid vortex dynamics should increase the rate of thermally activated vortex motion
S
. Here, we characterize the dependence of
S
on sample thickness in Nb and cuprate films. The results for Nb are consistent with collective pinning theory, whereas creep in the cuprate is strongly influenced by sparse large precipitates. We leverage the sensitivity of
S
to
d
to determine the generally unknown scale
L
c
, establishing a new route for extracting pinning lengths in heterogeneously disordered materials.
Superconductors: Vortices and the role of defects
Disorder influences the properties of superconductors, as defects can pin vortices. Thermal energy unpins the vortices, whose creep rate is expected to depend on sample thickness, in particular when the thickness is reduced to below the pinning length. However, the description of pinning in systems with different types of defects is still a matter of debate. Serena Eley at Los Alamos National Laboratory and colleagues systematically studied the thickness dependence of the creep rate of vortices in films of Nb (superconductive critical temperature T
c
= 9.2 K) and of a cuprate material (T
c
= 92 K). The results unveil the different role of defects in pinning vortices in these materials and show that this approach provides a means of directly accessing the pinning length in heterogeneously disordered materials, such as cuprates.</description><identifier>ISSN: 2397-4648</identifier><identifier>EISSN: 2397-4648</identifier><identifier>DOI: 10.1038/s41535-018-0108-1</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005 ; 639/766/119/1003 ; Carrying capacity ; Coherence length ; Condensed Matter Physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Creep rate ; Crossovers ; Cuprates ; Dependence ; Magnetic flux ; Material properties ; Material Science ; Physics ; Physics and Astronomy ; Point defects ; Precipitates ; Quantum Physics ; Structural Materials ; Superconductors ; Surfaces and Interfaces ; Thermal energy ; Thick films ; Thickness ; Thin Films ; Vortices</subject><ispartof>npj quantum materials, 2018-08, Vol.3 (1), Article 37</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-1f4d5346b015adb23d2200449cdfc07d516514c9e2726b6548f08e4f84e0125d3</citedby><cites>FETCH-LOGICAL-c452t-1f4d5346b015adb23d2200449cdfc07d516514c9e2726b6548f08e4f84e0125d3</cites><orcidid>0000-0001-9778-323X ; 0000-0003-1537-0824 ; 0000-0002-2928-5316 ; 000000019778323X ; 0000000229285316 ; 0000000315370824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41535-018-0108-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41535-018-0108-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,27923,27924,41119,42188,51575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1465503$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Eley, Serena</creatorcontrib><creatorcontrib>Willa, Roland</creatorcontrib><creatorcontrib>Miura, Masashi</creatorcontrib><creatorcontrib>Sato, Michio</creatorcontrib><creatorcontrib>Leroux, Maxime</creatorcontrib><creatorcontrib>Henry, Michael David</creatorcontrib><creatorcontrib>Civale, Leonardo</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Accelerated vortex dynamics across the magnetic 3D-to-2D crossover in disordered superconductors</title><title>npj quantum materials</title><addtitle>npj Quant Mater</addtitle><description>Disorder can have remarkably disparate consequences in superconductors, driving superconductor–insulator transitions in ultrathin films by localizing electron pairs and boosting the supercurrent carrying capacity of thick films by localizing vortices (magnetic flux lines). Though the electronic 3D-to-2D crossover at material thicknesses
d
~
ξ
(coherence length) is well studied, a similarly consequential magnetic crossover at
d
~
L
c
(pinning length) that should drastically alter material properties remains largely underexamined. According to collective pinning theory, vortex segments of length
L
c
bend to adjust to energy wells provided by point defects. Consequently, if
d
truncates
L
c
, a change from elastic to rigid vortex dynamics should increase the rate of thermally activated vortex motion
S
. Here, we characterize the dependence of
S
on sample thickness in Nb and cuprate films. The results for Nb are consistent with collective pinning theory, whereas creep in the cuprate is strongly influenced by sparse large precipitates. We leverage the sensitivity of
S
to
d
to determine the generally unknown scale
L
c
, establishing a new route for extracting pinning lengths in heterogeneously disordered materials.
Superconductors: Vortices and the role of defects
Disorder influences the properties of superconductors, as defects can pin vortices. Thermal energy unpins the vortices, whose creep rate is expected to depend on sample thickness, in particular when the thickness is reduced to below the pinning length. However, the description of pinning in systems with different types of defects is still a matter of debate. Serena Eley at Los Alamos National Laboratory and colleagues systematically studied the thickness dependence of the creep rate of vortices in films of Nb (superconductive critical temperature T
c
= 9.2 K) and of a cuprate material (T
c
= 92 K). The results unveil the different role of defects in pinning vortices in these materials and show that this approach provides a means of directly accessing the pinning length in heterogeneously disordered materials, such as cuprates.</description><subject>639/301/1005</subject><subject>639/766/119/1003</subject><subject>Carrying capacity</subject><subject>Coherence length</subject><subject>Condensed Matter Physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Creep rate</subject><subject>Crossovers</subject><subject>Cuprates</subject><subject>Dependence</subject><subject>Magnetic flux</subject><subject>Material properties</subject><subject>Material Science</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Point defects</subject><subject>Precipitates</subject><subject>Quantum Physics</subject><subject>Structural Materials</subject><subject>Superconductors</subject><subject>Surfaces and Interfaces</subject><subject>Thermal energy</subject><subject>Thick films</subject><subject>Thickness</subject><subject>Thin Films</subject><subject>Vortices</subject><issn>2397-4648</issn><issn>2397-4648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LAzEQhhdRsNT-AG9Bz6uZfGyzx9L6BQUveo7bZLbd0m5qki3235t2Bb14GGZgnvdl5s2ya6B3QLm6DwIklzkFlYqqHM6yAePlOBeFUOd_5stsFMKaUsoAlCiKQfYxMQY36KuIluydj_hF7KGtto0JpDLehUDiCsm2WrYYG0P4LI8uZzNy2rk9etK0xDbBeYs-mYRuh9641nYmOh-usou62gQc_fRh9v748DZ9zuevTy_TyTw3QrKYQy2s5KJYUJCVXTBuGaNUiNLY2tCxlVBIEKZENmbFopBC1VShqJVACkxaPsxuel8XYqODaSKaVTqjRRM1iEJKyhN020M77z47DFGvXefbdJdmXJVjACrKREFPnV70WOudb7aVP2ig-hi47gPXKXB9DFxD0rBeExLbLtH_Ov8v-gaG0IIL</recordid><startdate>20180817</startdate><enddate>20180817</enddate><creator>Eley, Serena</creator><creator>Willa, Roland</creator><creator>Miura, Masashi</creator><creator>Sato, Michio</creator><creator>Leroux, Maxime</creator><creator>Henry, Michael David</creator><creator>Civale, Leonardo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9778-323X</orcidid><orcidid>https://orcid.org/0000-0003-1537-0824</orcidid><orcidid>https://orcid.org/0000-0002-2928-5316</orcidid><orcidid>https://orcid.org/000000019778323X</orcidid><orcidid>https://orcid.org/0000000229285316</orcidid><orcidid>https://orcid.org/0000000315370824</orcidid></search><sort><creationdate>20180817</creationdate><title>Accelerated vortex dynamics across the magnetic 3D-to-2D crossover in disordered superconductors</title><author>Eley, Serena ; Willa, Roland ; Miura, Masashi ; Sato, Michio ; Leroux, Maxime ; Henry, Michael David ; Civale, Leonardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-1f4d5346b015adb23d2200449cdfc07d516514c9e2726b6548f08e4f84e0125d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/301/1005</topic><topic>639/766/119/1003</topic><topic>Carrying capacity</topic><topic>Coherence length</topic><topic>Condensed Matter Physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Creep rate</topic><topic>Crossovers</topic><topic>Cuprates</topic><topic>Dependence</topic><topic>Magnetic flux</topic><topic>Material properties</topic><topic>Material Science</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Point defects</topic><topic>Precipitates</topic><topic>Quantum Physics</topic><topic>Structural Materials</topic><topic>Superconductors</topic><topic>Surfaces and Interfaces</topic><topic>Thermal energy</topic><topic>Thick films</topic><topic>Thickness</topic><topic>Thin Films</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eley, Serena</creatorcontrib><creatorcontrib>Willa, Roland</creatorcontrib><creatorcontrib>Miura, Masashi</creatorcontrib><creatorcontrib>Sato, Michio</creatorcontrib><creatorcontrib>Leroux, Maxime</creatorcontrib><creatorcontrib>Henry, Michael David</creatorcontrib><creatorcontrib>Civale, Leonardo</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>npj quantum materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eley, Serena</au><au>Willa, Roland</au><au>Miura, Masashi</au><au>Sato, Michio</au><au>Leroux, Maxime</au><au>Henry, Michael David</au><au>Civale, Leonardo</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated vortex dynamics across the magnetic 3D-to-2D crossover in disordered superconductors</atitle><jtitle>npj quantum materials</jtitle><stitle>npj Quant Mater</stitle><date>2018-08-17</date><risdate>2018</risdate><volume>3</volume><issue>1</issue><artnum>37</artnum><issn>2397-4648</issn><eissn>2397-4648</eissn><abstract>Disorder can have remarkably disparate consequences in superconductors, driving superconductor–insulator transitions in ultrathin films by localizing electron pairs and boosting the supercurrent carrying capacity of thick films by localizing vortices (magnetic flux lines). Though the electronic 3D-to-2D crossover at material thicknesses
d
~
ξ
(coherence length) is well studied, a similarly consequential magnetic crossover at
d
~
L
c
(pinning length) that should drastically alter material properties remains largely underexamined. According to collective pinning theory, vortex segments of length
L
c
bend to adjust to energy wells provided by point defects. Consequently, if
d
truncates
L
c
, a change from elastic to rigid vortex dynamics should increase the rate of thermally activated vortex motion
S
. Here, we characterize the dependence of
S
on sample thickness in Nb and cuprate films. The results for Nb are consistent with collective pinning theory, whereas creep in the cuprate is strongly influenced by sparse large precipitates. We leverage the sensitivity of
S
to
d
to determine the generally unknown scale
L
c
, establishing a new route for extracting pinning lengths in heterogeneously disordered materials.
Superconductors: Vortices and the role of defects
Disorder influences the properties of superconductors, as defects can pin vortices. Thermal energy unpins the vortices, whose creep rate is expected to depend on sample thickness, in particular when the thickness is reduced to below the pinning length. However, the description of pinning in systems with different types of defects is still a matter of debate. Serena Eley at Los Alamos National Laboratory and colleagues systematically studied the thickness dependence of the creep rate of vortices in films of Nb (superconductive critical temperature T
c
= 9.2 K) and of a cuprate material (T
c
= 92 K). The results unveil the different role of defects in pinning vortices in these materials and show that this approach provides a means of directly accessing the pinning length in heterogeneously disordered materials, such as cuprates.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41535-018-0108-1</doi><orcidid>https://orcid.org/0000-0001-9778-323X</orcidid><orcidid>https://orcid.org/0000-0003-1537-0824</orcidid><orcidid>https://orcid.org/0000-0002-2928-5316</orcidid><orcidid>https://orcid.org/000000019778323X</orcidid><orcidid>https://orcid.org/0000000229285316</orcidid><orcidid>https://orcid.org/0000000315370824</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2397-4648 |
ispartof | npj quantum materials, 2018-08, Vol.3 (1), Article 37 |
issn | 2397-4648 2397-4648 |
language | eng |
recordid | cdi_osti_scitechconnect_1465503 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals |
subjects | 639/301/1005 639/766/119/1003 Carrying capacity Coherence length Condensed Matter Physics CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Creep rate Crossovers Cuprates Dependence Magnetic flux Material properties Material Science Physics Physics and Astronomy Point defects Precipitates Quantum Physics Structural Materials Superconductors Surfaces and Interfaces Thermal energy Thick films Thickness Thin Films Vortices |
title | Accelerated vortex dynamics across the magnetic 3D-to-2D crossover in disordered superconductors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20vortex%20dynamics%20across%20the%20magnetic%203D-to-2D%20crossover%20in%20disordered%20superconductors&rft.jtitle=npj%20quantum%20materials&rft.au=Eley,%20Serena&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-08-17&rft.volume=3&rft.issue=1&rft.artnum=37&rft.issn=2397-4648&rft.eissn=2397-4648&rft_id=info:doi/10.1038/s41535-018-0108-1&rft_dat=%3Cproquest_osti_%3E2389711049%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389711049&rft_id=info:pmid/&rfr_iscdi=true |