Accelerated vortex dynamics across the magnetic 3D-to-2D crossover in disordered superconductors

Disorder can have remarkably disparate consequences in superconductors, driving superconductor–insulator transitions in ultrathin films by localizing electron pairs and boosting the supercurrent carrying capacity of thick films by localizing vortices (magnetic flux lines). Though the electronic 3D-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj quantum materials 2018-08, Vol.3 (1), Article 37
Hauptverfasser: Eley, Serena, Willa, Roland, Miura, Masashi, Sato, Michio, Leroux, Maxime, Henry, Michael David, Civale, Leonardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title npj quantum materials
container_volume 3
creator Eley, Serena
Willa, Roland
Miura, Masashi
Sato, Michio
Leroux, Maxime
Henry, Michael David
Civale, Leonardo
description Disorder can have remarkably disparate consequences in superconductors, driving superconductor–insulator transitions in ultrathin films by localizing electron pairs and boosting the supercurrent carrying capacity of thick films by localizing vortices (magnetic flux lines). Though the electronic 3D-to-2D crossover at material thicknesses d  ~  ξ (coherence length) is well studied, a similarly consequential magnetic crossover at d  ~  L c (pinning length) that should drastically alter material properties remains largely underexamined. According to collective pinning theory, vortex segments of length L c bend to adjust to energy wells provided by point defects. Consequently, if d truncates L c , a change from elastic to rigid vortex dynamics should increase the rate of thermally activated vortex motion S . Here, we characterize the dependence of S on sample thickness in Nb and cuprate films. The results for Nb are consistent with collective pinning theory, whereas creep in the cuprate is strongly influenced by sparse large precipitates. We leverage the sensitivity of S to d to determine the generally unknown scale L c , establishing a new route for extracting pinning lengths in heterogeneously disordered materials. Superconductors: Vortices and the role of defects Disorder influences the properties of superconductors, as defects can pin vortices. Thermal energy unpins the vortices, whose creep rate is expected to depend on sample thickness, in particular when the thickness is reduced to below the pinning length. However, the description of pinning in systems with different types of defects is still a matter of debate. Serena Eley at Los Alamos National Laboratory and colleagues systematically studied the thickness dependence of the creep rate of vortices in films of Nb (superconductive critical temperature T c  = 9.2 K) and of a cuprate material (T c  = 92 K). The results unveil the different role of defects in pinning vortices in these materials and show that this approach provides a means of directly accessing the pinning length in heterogeneously disordered materials, such as cuprates.
doi_str_mv 10.1038/s41535-018-0108-1
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1465503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389711049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-1f4d5346b015adb23d2200449cdfc07d516514c9e2726b6548f08e4f84e0125d3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhhdRsNT-AG9Bz6uZfGyzx9L6BQUveo7bZLbd0m5qki3235t2Bb14GGZgnvdl5s2ya6B3QLm6DwIklzkFlYqqHM6yAePlOBeFUOd_5stsFMKaUsoAlCiKQfYxMQY36KuIluydj_hF7KGtto0JpDLehUDiCsm2WrYYG0P4LI8uZzNy2rk9etK0xDbBeYs-mYRuh9641nYmOh-usou62gQc_fRh9v748DZ9zuevTy_TyTw3QrKYQy2s5KJYUJCVXTBuGaNUiNLY2tCxlVBIEKZENmbFopBC1VShqJVACkxaPsxuel8XYqODaSKaVTqjRRM1iEJKyhN020M77z47DFGvXefbdJdmXJVjACrKREFPnV70WOudb7aVP2ig-hi47gPXKXB9DFxD0rBeExLbLtH_Ov8v-gaG0IIL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389711049</pqid></control><display><type>article</type><title>Accelerated vortex dynamics across the magnetic 3D-to-2D crossover in disordered superconductors</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Eley, Serena ; Willa, Roland ; Miura, Masashi ; Sato, Michio ; Leroux, Maxime ; Henry, Michael David ; Civale, Leonardo</creator><creatorcontrib>Eley, Serena ; Willa, Roland ; Miura, Masashi ; Sato, Michio ; Leroux, Maxime ; Henry, Michael David ; Civale, Leonardo ; Argonne National Laboratory (ANL), Argonne, IL (United States) ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Disorder can have remarkably disparate consequences in superconductors, driving superconductor–insulator transitions in ultrathin films by localizing electron pairs and boosting the supercurrent carrying capacity of thick films by localizing vortices (magnetic flux lines). Though the electronic 3D-to-2D crossover at material thicknesses d  ~  ξ (coherence length) is well studied, a similarly consequential magnetic crossover at d  ~  L c (pinning length) that should drastically alter material properties remains largely underexamined. According to collective pinning theory, vortex segments of length L c bend to adjust to energy wells provided by point defects. Consequently, if d truncates L c , a change from elastic to rigid vortex dynamics should increase the rate of thermally activated vortex motion S . Here, we characterize the dependence of S on sample thickness in Nb and cuprate films. The results for Nb are consistent with collective pinning theory, whereas creep in the cuprate is strongly influenced by sparse large precipitates. We leverage the sensitivity of S to d to determine the generally unknown scale L c , establishing a new route for extracting pinning lengths in heterogeneously disordered materials. Superconductors: Vortices and the role of defects Disorder influences the properties of superconductors, as defects can pin vortices. Thermal energy unpins the vortices, whose creep rate is expected to depend on sample thickness, in particular when the thickness is reduced to below the pinning length. However, the description of pinning in systems with different types of defects is still a matter of debate. Serena Eley at Los Alamos National Laboratory and colleagues systematically studied the thickness dependence of the creep rate of vortices in films of Nb (superconductive critical temperature T c  = 9.2 K) and of a cuprate material (T c  = 92 K). The results unveil the different role of defects in pinning vortices in these materials and show that this approach provides a means of directly accessing the pinning length in heterogeneously disordered materials, such as cuprates.</description><identifier>ISSN: 2397-4648</identifier><identifier>EISSN: 2397-4648</identifier><identifier>DOI: 10.1038/s41535-018-0108-1</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005 ; 639/766/119/1003 ; Carrying capacity ; Coherence length ; Condensed Matter Physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Creep rate ; Crossovers ; Cuprates ; Dependence ; Magnetic flux ; Material properties ; Material Science ; Physics ; Physics and Astronomy ; Point defects ; Precipitates ; Quantum Physics ; Structural Materials ; Superconductors ; Surfaces and Interfaces ; Thermal energy ; Thick films ; Thickness ; Thin Films ; Vortices</subject><ispartof>npj quantum materials, 2018-08, Vol.3 (1), Article 37</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-1f4d5346b015adb23d2200449cdfc07d516514c9e2726b6548f08e4f84e0125d3</citedby><cites>FETCH-LOGICAL-c452t-1f4d5346b015adb23d2200449cdfc07d516514c9e2726b6548f08e4f84e0125d3</cites><orcidid>0000-0001-9778-323X ; 0000-0003-1537-0824 ; 0000-0002-2928-5316 ; 000000019778323X ; 0000000229285316 ; 0000000315370824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41535-018-0108-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41535-018-0108-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,27923,27924,41119,42188,51575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1465503$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Eley, Serena</creatorcontrib><creatorcontrib>Willa, Roland</creatorcontrib><creatorcontrib>Miura, Masashi</creatorcontrib><creatorcontrib>Sato, Michio</creatorcontrib><creatorcontrib>Leroux, Maxime</creatorcontrib><creatorcontrib>Henry, Michael David</creatorcontrib><creatorcontrib>Civale, Leonardo</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Accelerated vortex dynamics across the magnetic 3D-to-2D crossover in disordered superconductors</title><title>npj quantum materials</title><addtitle>npj Quant Mater</addtitle><description>Disorder can have remarkably disparate consequences in superconductors, driving superconductor–insulator transitions in ultrathin films by localizing electron pairs and boosting the supercurrent carrying capacity of thick films by localizing vortices (magnetic flux lines). Though the electronic 3D-to-2D crossover at material thicknesses d  ~  ξ (coherence length) is well studied, a similarly consequential magnetic crossover at d  ~  L c (pinning length) that should drastically alter material properties remains largely underexamined. According to collective pinning theory, vortex segments of length L c bend to adjust to energy wells provided by point defects. Consequently, if d truncates L c , a change from elastic to rigid vortex dynamics should increase the rate of thermally activated vortex motion S . Here, we characterize the dependence of S on sample thickness in Nb and cuprate films. The results for Nb are consistent with collective pinning theory, whereas creep in the cuprate is strongly influenced by sparse large precipitates. We leverage the sensitivity of S to d to determine the generally unknown scale L c , establishing a new route for extracting pinning lengths in heterogeneously disordered materials. Superconductors: Vortices and the role of defects Disorder influences the properties of superconductors, as defects can pin vortices. Thermal energy unpins the vortices, whose creep rate is expected to depend on sample thickness, in particular when the thickness is reduced to below the pinning length. However, the description of pinning in systems with different types of defects is still a matter of debate. Serena Eley at Los Alamos National Laboratory and colleagues systematically studied the thickness dependence of the creep rate of vortices in films of Nb (superconductive critical temperature T c  = 9.2 K) and of a cuprate material (T c  = 92 K). The results unveil the different role of defects in pinning vortices in these materials and show that this approach provides a means of directly accessing the pinning length in heterogeneously disordered materials, such as cuprates.</description><subject>639/301/1005</subject><subject>639/766/119/1003</subject><subject>Carrying capacity</subject><subject>Coherence length</subject><subject>Condensed Matter Physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Creep rate</subject><subject>Crossovers</subject><subject>Cuprates</subject><subject>Dependence</subject><subject>Magnetic flux</subject><subject>Material properties</subject><subject>Material Science</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Point defects</subject><subject>Precipitates</subject><subject>Quantum Physics</subject><subject>Structural Materials</subject><subject>Superconductors</subject><subject>Surfaces and Interfaces</subject><subject>Thermal energy</subject><subject>Thick films</subject><subject>Thickness</subject><subject>Thin Films</subject><subject>Vortices</subject><issn>2397-4648</issn><issn>2397-4648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LAzEQhhdRsNT-AG9Bz6uZfGyzx9L6BQUveo7bZLbd0m5qki3235t2Bb14GGZgnvdl5s2ya6B3QLm6DwIklzkFlYqqHM6yAePlOBeFUOd_5stsFMKaUsoAlCiKQfYxMQY36KuIluydj_hF7KGtto0JpDLehUDiCsm2WrYYG0P4LI8uZzNy2rk9etK0xDbBeYs-mYRuh9641nYmOh-usou62gQc_fRh9v748DZ9zuevTy_TyTw3QrKYQy2s5KJYUJCVXTBuGaNUiNLY2tCxlVBIEKZENmbFopBC1VShqJVACkxaPsxuel8XYqODaSKaVTqjRRM1iEJKyhN020M77z47DFGvXefbdJdmXJVjACrKREFPnV70WOudb7aVP2ig-hi47gPXKXB9DFxD0rBeExLbLtH_Ov8v-gaG0IIL</recordid><startdate>20180817</startdate><enddate>20180817</enddate><creator>Eley, Serena</creator><creator>Willa, Roland</creator><creator>Miura, Masashi</creator><creator>Sato, Michio</creator><creator>Leroux, Maxime</creator><creator>Henry, Michael David</creator><creator>Civale, Leonardo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9778-323X</orcidid><orcidid>https://orcid.org/0000-0003-1537-0824</orcidid><orcidid>https://orcid.org/0000-0002-2928-5316</orcidid><orcidid>https://orcid.org/000000019778323X</orcidid><orcidid>https://orcid.org/0000000229285316</orcidid><orcidid>https://orcid.org/0000000315370824</orcidid></search><sort><creationdate>20180817</creationdate><title>Accelerated vortex dynamics across the magnetic 3D-to-2D crossover in disordered superconductors</title><author>Eley, Serena ; Willa, Roland ; Miura, Masashi ; Sato, Michio ; Leroux, Maxime ; Henry, Michael David ; Civale, Leonardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-1f4d5346b015adb23d2200449cdfc07d516514c9e2726b6548f08e4f84e0125d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/301/1005</topic><topic>639/766/119/1003</topic><topic>Carrying capacity</topic><topic>Coherence length</topic><topic>Condensed Matter Physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Creep rate</topic><topic>Crossovers</topic><topic>Cuprates</topic><topic>Dependence</topic><topic>Magnetic flux</topic><topic>Material properties</topic><topic>Material Science</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Point defects</topic><topic>Precipitates</topic><topic>Quantum Physics</topic><topic>Structural Materials</topic><topic>Superconductors</topic><topic>Surfaces and Interfaces</topic><topic>Thermal energy</topic><topic>Thick films</topic><topic>Thickness</topic><topic>Thin Films</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eley, Serena</creatorcontrib><creatorcontrib>Willa, Roland</creatorcontrib><creatorcontrib>Miura, Masashi</creatorcontrib><creatorcontrib>Sato, Michio</creatorcontrib><creatorcontrib>Leroux, Maxime</creatorcontrib><creatorcontrib>Henry, Michael David</creatorcontrib><creatorcontrib>Civale, Leonardo</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>npj quantum materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eley, Serena</au><au>Willa, Roland</au><au>Miura, Masashi</au><au>Sato, Michio</au><au>Leroux, Maxime</au><au>Henry, Michael David</au><au>Civale, Leonardo</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated vortex dynamics across the magnetic 3D-to-2D crossover in disordered superconductors</atitle><jtitle>npj quantum materials</jtitle><stitle>npj Quant Mater</stitle><date>2018-08-17</date><risdate>2018</risdate><volume>3</volume><issue>1</issue><artnum>37</artnum><issn>2397-4648</issn><eissn>2397-4648</eissn><abstract>Disorder can have remarkably disparate consequences in superconductors, driving superconductor–insulator transitions in ultrathin films by localizing electron pairs and boosting the supercurrent carrying capacity of thick films by localizing vortices (magnetic flux lines). Though the electronic 3D-to-2D crossover at material thicknesses d  ~  ξ (coherence length) is well studied, a similarly consequential magnetic crossover at d  ~  L c (pinning length) that should drastically alter material properties remains largely underexamined. According to collective pinning theory, vortex segments of length L c bend to adjust to energy wells provided by point defects. Consequently, if d truncates L c , a change from elastic to rigid vortex dynamics should increase the rate of thermally activated vortex motion S . Here, we characterize the dependence of S on sample thickness in Nb and cuprate films. The results for Nb are consistent with collective pinning theory, whereas creep in the cuprate is strongly influenced by sparse large precipitates. We leverage the sensitivity of S to d to determine the generally unknown scale L c , establishing a new route for extracting pinning lengths in heterogeneously disordered materials. Superconductors: Vortices and the role of defects Disorder influences the properties of superconductors, as defects can pin vortices. Thermal energy unpins the vortices, whose creep rate is expected to depend on sample thickness, in particular when the thickness is reduced to below the pinning length. However, the description of pinning in systems with different types of defects is still a matter of debate. Serena Eley at Los Alamos National Laboratory and colleagues systematically studied the thickness dependence of the creep rate of vortices in films of Nb (superconductive critical temperature T c  = 9.2 K) and of a cuprate material (T c  = 92 K). The results unveil the different role of defects in pinning vortices in these materials and show that this approach provides a means of directly accessing the pinning length in heterogeneously disordered materials, such as cuprates.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41535-018-0108-1</doi><orcidid>https://orcid.org/0000-0001-9778-323X</orcidid><orcidid>https://orcid.org/0000-0003-1537-0824</orcidid><orcidid>https://orcid.org/0000-0002-2928-5316</orcidid><orcidid>https://orcid.org/000000019778323X</orcidid><orcidid>https://orcid.org/0000000229285316</orcidid><orcidid>https://orcid.org/0000000315370824</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2397-4648
ispartof npj quantum materials, 2018-08, Vol.3 (1), Article 37
issn 2397-4648
2397-4648
language eng
recordid cdi_osti_scitechconnect_1465503
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals
subjects 639/301/1005
639/766/119/1003
Carrying capacity
Coherence length
Condensed Matter Physics
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Creep rate
Crossovers
Cuprates
Dependence
Magnetic flux
Material properties
Material Science
Physics
Physics and Astronomy
Point defects
Precipitates
Quantum Physics
Structural Materials
Superconductors
Surfaces and Interfaces
Thermal energy
Thick films
Thickness
Thin Films
Vortices
title Accelerated vortex dynamics across the magnetic 3D-to-2D crossover in disordered superconductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20vortex%20dynamics%20across%20the%20magnetic%203D-to-2D%20crossover%20in%20disordered%20superconductors&rft.jtitle=npj%20quantum%20materials&rft.au=Eley,%20Serena&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-08-17&rft.volume=3&rft.issue=1&rft.artnum=37&rft.issn=2397-4648&rft.eissn=2397-4648&rft_id=info:doi/10.1038/s41535-018-0108-1&rft_dat=%3Cproquest_osti_%3E2389711049%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389711049&rft_id=info:pmid/&rfr_iscdi=true