Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates

Solar to chemical energy conversion could provide an alternative to mankind's unsustainable use of fossil fuels. One promising approach is the electrochemical reduction of CO2 into chemical products, in particular hydrocarbons and oxygenates which are formed by multi-electron transfer reactions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2017-10, Vol.10 (10)
Hauptverfasser: Gurudayal, Gurudayal, Bullock, James, Srankó, Dávid F., Towle, Clarissa M., Lum, Yanwei, Hettick, Mark, Scott, M. C., Javey, Ali, Ager, Joel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Energy & environmental science
container_volume 10
creator Gurudayal, Gurudayal
Bullock, James
Srankó, Dávid F.
Towle, Clarissa M.
Lum, Yanwei
Hettick, Mark
Scott, M. C.
Javey, Ali
Ager, Joel
description Solar to chemical energy conversion could provide an alternative to mankind's unsustainable use of fossil fuels. One promising approach is the electrochemical reduction of CO2 into chemical products, in particular hydrocarbons and oxygenates which are formed by multi-electron transfer reactions. Here, a nanostructured Cu-Ag bimetallic cathode is utilized to selectively and efficiently facilitate these reactions. When operated in an electrolysis cell, the cathode provides a constant energetic efficiency for hydrocarbon and oxygenate production. As a result, when coupled to Si photovoltaic cells, solar conversion efficiencies of 3-4% to the target products are achieved for 0.35 to 1 Sun illumination. Use of a four-terminal III-V/Si tandem solar cell configuration yields a conversion efficiency to hydrocarbons and oxygenates exceeding 5% at 1 Sun illumination. Here, this study provides a clear framework for the future advancement of efficient solar-driven CO2 reduction devices.In a process analogous to natural photosynthesis, solar-driven reduction of carbon dioxide to hydrocarbon and oxygenate products is demonstrated with an overall efficiency exceeding 5%.
doi_str_mv 10.1039/c7ee01764b
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1465416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1465416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-231a101353b239cf044731987ea2cb766976a4989c030d964c8749bdff3717c23</originalsourceid><addsrcrecordid>eNo1js1KAzEURoMoWKsbnyC4H83f5DZLGaoVCl2o65K5ueNExgQmUezbW1BX34EDh4-xaylupdDuDoFISLCmP2ELCa1pWhD29J-tU-fsopR3IawS4BbseT0MESOlykue_NyEOX5R4jQR1jnjSB8R_cS7neIzhU-sMSdeMx8P4aj93OdUuE-B5-_DGyVfqVyys8FPha7-dsleH9Yv3abZ7h6fuvttg9qa2igtvRRSt7pX2uEgjAEt3QrIK-zBWgfWG7dyKLQIzhpcgXF9GAYNElDpJbv57eZS475grIQj5pSO1_fS2NZIq38Aux1Q5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Gurudayal, Gurudayal ; Bullock, James ; Srankó, Dávid F. ; Towle, Clarissa M. ; Lum, Yanwei ; Hettick, Mark ; Scott, M. C. ; Javey, Ali ; Ager, Joel</creator><creatorcontrib>Gurudayal, Gurudayal ; Bullock, James ; Srankó, Dávid F. ; Towle, Clarissa M. ; Lum, Yanwei ; Hettick, Mark ; Scott, M. C. ; Javey, Ali ; Ager, Joel ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Solar to chemical energy conversion could provide an alternative to mankind's unsustainable use of fossil fuels. One promising approach is the electrochemical reduction of CO2 into chemical products, in particular hydrocarbons and oxygenates which are formed by multi-electron transfer reactions. Here, a nanostructured Cu-Ag bimetallic cathode is utilized to selectively and efficiently facilitate these reactions. When operated in an electrolysis cell, the cathode provides a constant energetic efficiency for hydrocarbon and oxygenate production. As a result, when coupled to Si photovoltaic cells, solar conversion efficiencies of 3-4% to the target products are achieved for 0.35 to 1 Sun illumination. Use of a four-terminal III-V/Si tandem solar cell configuration yields a conversion efficiency to hydrocarbons and oxygenates exceeding 5% at 1 Sun illumination. Here, this study provides a clear framework for the future advancement of efficient solar-driven CO2 reduction devices.In a process analogous to natural photosynthesis, solar-driven reduction of carbon dioxide to hydrocarbon and oxygenate products is demonstrated with an overall efficiency exceeding 5%.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c7ee01764b</identifier><language>eng</language><publisher>United States: Royal Society of Chemistry</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>Energy &amp; environmental science, 2017-10, Vol.10 (10)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-231a101353b239cf044731987ea2cb766976a4989c030d964c8749bdff3717c23</citedby><orcidid>0000000224941409 ; 0000000318605051 ; 0000000193349751 ; 0000000292452199 ; 0000000172147931 ; 0000000271186549 ; 0000000172612098</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1465416$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gurudayal, Gurudayal</creatorcontrib><creatorcontrib>Bullock, James</creatorcontrib><creatorcontrib>Srankó, Dávid F.</creatorcontrib><creatorcontrib>Towle, Clarissa M.</creatorcontrib><creatorcontrib>Lum, Yanwei</creatorcontrib><creatorcontrib>Hettick, Mark</creatorcontrib><creatorcontrib>Scott, M. C.</creatorcontrib><creatorcontrib>Javey, Ali</creatorcontrib><creatorcontrib>Ager, Joel</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates</title><title>Energy &amp; environmental science</title><description>Solar to chemical energy conversion could provide an alternative to mankind's unsustainable use of fossil fuels. One promising approach is the electrochemical reduction of CO2 into chemical products, in particular hydrocarbons and oxygenates which are formed by multi-electron transfer reactions. Here, a nanostructured Cu-Ag bimetallic cathode is utilized to selectively and efficiently facilitate these reactions. When operated in an electrolysis cell, the cathode provides a constant energetic efficiency for hydrocarbon and oxygenate production. As a result, when coupled to Si photovoltaic cells, solar conversion efficiencies of 3-4% to the target products are achieved for 0.35 to 1 Sun illumination. Use of a four-terminal III-V/Si tandem solar cell configuration yields a conversion efficiency to hydrocarbons and oxygenates exceeding 5% at 1 Sun illumination. Here, this study provides a clear framework for the future advancement of efficient solar-driven CO2 reduction devices.In a process analogous to natural photosynthesis, solar-driven reduction of carbon dioxide to hydrocarbon and oxygenate products is demonstrated with an overall efficiency exceeding 5%.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo1js1KAzEURoMoWKsbnyC4H83f5DZLGaoVCl2o65K5ueNExgQmUezbW1BX34EDh4-xaylupdDuDoFISLCmP2ELCa1pWhD29J-tU-fsopR3IawS4BbseT0MESOlykue_NyEOX5R4jQR1jnjSB8R_cS7neIzhU-sMSdeMx8P4aj93OdUuE-B5-_DGyVfqVyys8FPha7-dsleH9Yv3abZ7h6fuvttg9qa2igtvRRSt7pX2uEgjAEt3QrIK-zBWgfWG7dyKLQIzhpcgXF9GAYNElDpJbv57eZS475grIQj5pSO1_fS2NZIq38Aux1Q5Q</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Gurudayal, Gurudayal</creator><creator>Bullock, James</creator><creator>Srankó, Dávid F.</creator><creator>Towle, Clarissa M.</creator><creator>Lum, Yanwei</creator><creator>Hettick, Mark</creator><creator>Scott, M. C.</creator><creator>Javey, Ali</creator><creator>Ager, Joel</creator><general>Royal Society of Chemistry</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000224941409</orcidid><orcidid>https://orcid.org/0000000318605051</orcidid><orcidid>https://orcid.org/0000000193349751</orcidid><orcidid>https://orcid.org/0000000292452199</orcidid><orcidid>https://orcid.org/0000000172147931</orcidid><orcidid>https://orcid.org/0000000271186549</orcidid><orcidid>https://orcid.org/0000000172612098</orcidid></search><sort><creationdate>20171001</creationdate><title>Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates</title><author>Gurudayal, Gurudayal ; Bullock, James ; Srankó, Dávid F. ; Towle, Clarissa M. ; Lum, Yanwei ; Hettick, Mark ; Scott, M. C. ; Javey, Ali ; Ager, Joel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-231a101353b239cf044731987ea2cb766976a4989c030d964c8749bdff3717c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurudayal, Gurudayal</creatorcontrib><creatorcontrib>Bullock, James</creatorcontrib><creatorcontrib>Srankó, Dávid F.</creatorcontrib><creatorcontrib>Towle, Clarissa M.</creatorcontrib><creatorcontrib>Lum, Yanwei</creatorcontrib><creatorcontrib>Hettick, Mark</creatorcontrib><creatorcontrib>Scott, M. C.</creatorcontrib><creatorcontrib>Javey, Ali</creatorcontrib><creatorcontrib>Ager, Joel</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurudayal, Gurudayal</au><au>Bullock, James</au><au>Srankó, Dávid F.</au><au>Towle, Clarissa M.</au><au>Lum, Yanwei</au><au>Hettick, Mark</au><au>Scott, M. C.</au><au>Javey, Ali</au><au>Ager, Joel</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>10</volume><issue>10</issue><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Solar to chemical energy conversion could provide an alternative to mankind's unsustainable use of fossil fuels. One promising approach is the electrochemical reduction of CO2 into chemical products, in particular hydrocarbons and oxygenates which are formed by multi-electron transfer reactions. Here, a nanostructured Cu-Ag bimetallic cathode is utilized to selectively and efficiently facilitate these reactions. When operated in an electrolysis cell, the cathode provides a constant energetic efficiency for hydrocarbon and oxygenate production. As a result, when coupled to Si photovoltaic cells, solar conversion efficiencies of 3-4% to the target products are achieved for 0.35 to 1 Sun illumination. Use of a four-terminal III-V/Si tandem solar cell configuration yields a conversion efficiency to hydrocarbons and oxygenates exceeding 5% at 1 Sun illumination. Here, this study provides a clear framework for the future advancement of efficient solar-driven CO2 reduction devices.In a process analogous to natural photosynthesis, solar-driven reduction of carbon dioxide to hydrocarbon and oxygenate products is demonstrated with an overall efficiency exceeding 5%.</abstract><cop>United States</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7ee01764b</doi><orcidid>https://orcid.org/0000000224941409</orcidid><orcidid>https://orcid.org/0000000318605051</orcidid><orcidid>https://orcid.org/0000000193349751</orcidid><orcidid>https://orcid.org/0000000292452199</orcidid><orcidid>https://orcid.org/0000000172147931</orcidid><orcidid>https://orcid.org/0000000271186549</orcidid><orcidid>https://orcid.org/0000000172612098</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2017-10, Vol.10 (10)
issn 1754-5692
1754-5706
language eng
recordid cdi_osti_scitechconnect_1465416
source Royal Society Of Chemistry Journals 2008-
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
title Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20solar-driven%20electrochemical%20CO2%20reduction%20to%20hydrocarbons%20and%20oxygenates&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Gurudayal,%20Gurudayal&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2017-10-01&rft.volume=10&rft.issue=10&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c7ee01764b&rft_dat=%3Costi%3E1465416%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true