Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates
Solar to chemical energy conversion could provide an alternative to mankind's unsustainable use of fossil fuels. One promising approach is the electrochemical reduction of CO2 into chemical products, in particular hydrocarbons and oxygenates which are formed by multi-electron transfer reactions...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2017-10, Vol.10 (10) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Energy & environmental science |
container_volume | 10 |
creator | Gurudayal, Gurudayal Bullock, James Srankó, Dávid F. Towle, Clarissa M. Lum, Yanwei Hettick, Mark Scott, M. C. Javey, Ali Ager, Joel |
description | Solar to chemical energy conversion could provide an alternative to mankind's unsustainable use of fossil fuels. One promising approach is the electrochemical reduction of CO2 into chemical products, in particular hydrocarbons and oxygenates which are formed by multi-electron transfer reactions. Here, a nanostructured Cu-Ag bimetallic cathode is utilized to selectively and efficiently facilitate these reactions. When operated in an electrolysis cell, the cathode provides a constant energetic efficiency for hydrocarbon and oxygenate production. As a result, when coupled to Si photovoltaic cells, solar conversion efficiencies of 3-4% to the target products are achieved for 0.35 to 1 Sun illumination. Use of a four-terminal III-V/Si tandem solar cell configuration yields a conversion efficiency to hydrocarbons and oxygenates exceeding 5% at 1 Sun illumination. Here, this study provides a clear framework for the future advancement of efficient solar-driven CO2 reduction devices.In a process analogous to natural photosynthesis, solar-driven reduction of carbon dioxide to hydrocarbon and oxygenate products is demonstrated with an overall efficiency exceeding 5%. |
doi_str_mv | 10.1039/c7ee01764b |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1465416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1465416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-231a101353b239cf044731987ea2cb766976a4989c030d964c8749bdff3717c23</originalsourceid><addsrcrecordid>eNo1js1KAzEURoMoWKsbnyC4H83f5DZLGaoVCl2o65K5ueNExgQmUezbW1BX34EDh4-xaylupdDuDoFISLCmP2ELCa1pWhD29J-tU-fsopR3IawS4BbseT0MESOlykue_NyEOX5R4jQR1jnjSB8R_cS7neIzhU-sMSdeMx8P4aj93OdUuE-B5-_DGyVfqVyys8FPha7-dsleH9Yv3abZ7h6fuvttg9qa2igtvRRSt7pX2uEgjAEt3QrIK-zBWgfWG7dyKLQIzhpcgXF9GAYNElDpJbv57eZS475grIQj5pSO1_fS2NZIq38Aux1Q5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Gurudayal, Gurudayal ; Bullock, James ; Srankó, Dávid F. ; Towle, Clarissa M. ; Lum, Yanwei ; Hettick, Mark ; Scott, M. C. ; Javey, Ali ; Ager, Joel</creator><creatorcontrib>Gurudayal, Gurudayal ; Bullock, James ; Srankó, Dávid F. ; Towle, Clarissa M. ; Lum, Yanwei ; Hettick, Mark ; Scott, M. C. ; Javey, Ali ; Ager, Joel ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Solar to chemical energy conversion could provide an alternative to mankind's unsustainable use of fossil fuels. One promising approach is the electrochemical reduction of CO2 into chemical products, in particular hydrocarbons and oxygenates which are formed by multi-electron transfer reactions. Here, a nanostructured Cu-Ag bimetallic cathode is utilized to selectively and efficiently facilitate these reactions. When operated in an electrolysis cell, the cathode provides a constant energetic efficiency for hydrocarbon and oxygenate production. As a result, when coupled to Si photovoltaic cells, solar conversion efficiencies of 3-4% to the target products are achieved for 0.35 to 1 Sun illumination. Use of a four-terminal III-V/Si tandem solar cell configuration yields a conversion efficiency to hydrocarbons and oxygenates exceeding 5% at 1 Sun illumination. Here, this study provides a clear framework for the future advancement of efficient solar-driven CO2 reduction devices.In a process analogous to natural photosynthesis, solar-driven reduction of carbon dioxide to hydrocarbon and oxygenate products is demonstrated with an overall efficiency exceeding 5%.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c7ee01764b</identifier><language>eng</language><publisher>United States: Royal Society of Chemistry</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>Energy & environmental science, 2017-10, Vol.10 (10)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-231a101353b239cf044731987ea2cb766976a4989c030d964c8749bdff3717c23</citedby><orcidid>0000000224941409 ; 0000000318605051 ; 0000000193349751 ; 0000000292452199 ; 0000000172147931 ; 0000000271186549 ; 0000000172612098</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1465416$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gurudayal, Gurudayal</creatorcontrib><creatorcontrib>Bullock, James</creatorcontrib><creatorcontrib>Srankó, Dávid F.</creatorcontrib><creatorcontrib>Towle, Clarissa M.</creatorcontrib><creatorcontrib>Lum, Yanwei</creatorcontrib><creatorcontrib>Hettick, Mark</creatorcontrib><creatorcontrib>Scott, M. C.</creatorcontrib><creatorcontrib>Javey, Ali</creatorcontrib><creatorcontrib>Ager, Joel</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates</title><title>Energy & environmental science</title><description>Solar to chemical energy conversion could provide an alternative to mankind's unsustainable use of fossil fuels. One promising approach is the electrochemical reduction of CO2 into chemical products, in particular hydrocarbons and oxygenates which are formed by multi-electron transfer reactions. Here, a nanostructured Cu-Ag bimetallic cathode is utilized to selectively and efficiently facilitate these reactions. When operated in an electrolysis cell, the cathode provides a constant energetic efficiency for hydrocarbon and oxygenate production. As a result, when coupled to Si photovoltaic cells, solar conversion efficiencies of 3-4% to the target products are achieved for 0.35 to 1 Sun illumination. Use of a four-terminal III-V/Si tandem solar cell configuration yields a conversion efficiency to hydrocarbons and oxygenates exceeding 5% at 1 Sun illumination. Here, this study provides a clear framework for the future advancement of efficient solar-driven CO2 reduction devices.In a process analogous to natural photosynthesis, solar-driven reduction of carbon dioxide to hydrocarbon and oxygenate products is demonstrated with an overall efficiency exceeding 5%.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo1js1KAzEURoMoWKsbnyC4H83f5DZLGaoVCl2o65K5ueNExgQmUezbW1BX34EDh4-xaylupdDuDoFISLCmP2ELCa1pWhD29J-tU-fsopR3IawS4BbseT0MESOlykue_NyEOX5R4jQR1jnjSB8R_cS7neIzhU-sMSdeMx8P4aj93OdUuE-B5-_DGyVfqVyys8FPha7-dsleH9Yv3abZ7h6fuvttg9qa2igtvRRSt7pX2uEgjAEt3QrIK-zBWgfWG7dyKLQIzhpcgXF9GAYNElDpJbv57eZS475grIQj5pSO1_fS2NZIq38Aux1Q5Q</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Gurudayal, Gurudayal</creator><creator>Bullock, James</creator><creator>Srankó, Dávid F.</creator><creator>Towle, Clarissa M.</creator><creator>Lum, Yanwei</creator><creator>Hettick, Mark</creator><creator>Scott, M. C.</creator><creator>Javey, Ali</creator><creator>Ager, Joel</creator><general>Royal Society of Chemistry</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000224941409</orcidid><orcidid>https://orcid.org/0000000318605051</orcidid><orcidid>https://orcid.org/0000000193349751</orcidid><orcidid>https://orcid.org/0000000292452199</orcidid><orcidid>https://orcid.org/0000000172147931</orcidid><orcidid>https://orcid.org/0000000271186549</orcidid><orcidid>https://orcid.org/0000000172612098</orcidid></search><sort><creationdate>20171001</creationdate><title>Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates</title><author>Gurudayal, Gurudayal ; Bullock, James ; Srankó, Dávid F. ; Towle, Clarissa M. ; Lum, Yanwei ; Hettick, Mark ; Scott, M. C. ; Javey, Ali ; Ager, Joel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-231a101353b239cf044731987ea2cb766976a4989c030d964c8749bdff3717c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurudayal, Gurudayal</creatorcontrib><creatorcontrib>Bullock, James</creatorcontrib><creatorcontrib>Srankó, Dávid F.</creatorcontrib><creatorcontrib>Towle, Clarissa M.</creatorcontrib><creatorcontrib>Lum, Yanwei</creatorcontrib><creatorcontrib>Hettick, Mark</creatorcontrib><creatorcontrib>Scott, M. C.</creatorcontrib><creatorcontrib>Javey, Ali</creatorcontrib><creatorcontrib>Ager, Joel</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurudayal, Gurudayal</au><au>Bullock, James</au><au>Srankó, Dávid F.</au><au>Towle, Clarissa M.</au><au>Lum, Yanwei</au><au>Hettick, Mark</au><au>Scott, M. C.</au><au>Javey, Ali</au><au>Ager, Joel</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates</atitle><jtitle>Energy & environmental science</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>10</volume><issue>10</issue><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Solar to chemical energy conversion could provide an alternative to mankind's unsustainable use of fossil fuels. One promising approach is the electrochemical reduction of CO2 into chemical products, in particular hydrocarbons and oxygenates which are formed by multi-electron transfer reactions. Here, a nanostructured Cu-Ag bimetallic cathode is utilized to selectively and efficiently facilitate these reactions. When operated in an electrolysis cell, the cathode provides a constant energetic efficiency for hydrocarbon and oxygenate production. As a result, when coupled to Si photovoltaic cells, solar conversion efficiencies of 3-4% to the target products are achieved for 0.35 to 1 Sun illumination. Use of a four-terminal III-V/Si tandem solar cell configuration yields a conversion efficiency to hydrocarbons and oxygenates exceeding 5% at 1 Sun illumination. Here, this study provides a clear framework for the future advancement of efficient solar-driven CO2 reduction devices.In a process analogous to natural photosynthesis, solar-driven reduction of carbon dioxide to hydrocarbon and oxygenate products is demonstrated with an overall efficiency exceeding 5%.</abstract><cop>United States</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7ee01764b</doi><orcidid>https://orcid.org/0000000224941409</orcidid><orcidid>https://orcid.org/0000000318605051</orcidid><orcidid>https://orcid.org/0000000193349751</orcidid><orcidid>https://orcid.org/0000000292452199</orcidid><orcidid>https://orcid.org/0000000172147931</orcidid><orcidid>https://orcid.org/0000000271186549</orcidid><orcidid>https://orcid.org/0000000172612098</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2017-10, Vol.10 (10) |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_osti_scitechconnect_1465416 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY |
title | Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20solar-driven%20electrochemical%20CO2%20reduction%20to%20hydrocarbons%20and%20oxygenates&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Gurudayal,%20Gurudayal&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2017-10-01&rft.volume=10&rft.issue=10&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c7ee01764b&rft_dat=%3Costi%3E1465416%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |