Effects of pressure on the structure and lattice dynamics of ammonium perchlorate: A combined experimental and theoretical study
In this paper, ammonium perchlorate NH4ClO4 (AP) was studied using synchrotron angle-dispersive X-ray powder diffraction (XRPD) and Raman spectroscopy. A diamond-anvil cell was used to compress AP up to 50 GPa at room temperature (RT). Density functional theory (DFT) calculations were performed to p...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2018-07, Vol.149 (3) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 149 |
creator | Kroonblawd, Matthew P. Koroglu, Batikan Zaug, Joseph M. Pagoria, Philip F. Goldman, Nir Greenberg, Eran Prakapenka, Vitali B. Kunz, Martin Bastea, Sorin Stavrou, Elissaios |
description | In this paper, ammonium perchlorate NH4ClO4 (AP) was studied using synchrotron angle-dispersive X-ray powder diffraction (XRPD) and Raman spectroscopy. A diamond-anvil cell was used to compress AP up to 50 GPa at room temperature (RT). Density functional theory (DFT) calculations were performed to provide further insight and comparison to the experimental data. A high-pressure barite-type structure (Phase II) forms at ≈4 GPa and appears stable up to 40 GPa. Refined atomic coordinates for Phase II are provided, and details for the Phase I → II transition mechanics are outlined. Pressure-dependent enthalpies computed for DFT-optimized crystal structures confirm the Phase I → II transition sequence, and the interpolated transition pressure is in excellent agreement with the experiment. Evidence for additional (underlying) structural modifications include a marked decrease in the Phase II b'-axis compressibility starting at 15 GPa and an unambiguous stress relaxation in the normalized stress-strain response at 36 GPa. Above 47 GPa, XRD Bragg peaks begin to decrease in amplitude and broaden. The apparent loss of crystalline long-range order likely signals the onset of amorphization. Three isostructural modifications were discovered within Phase II via Raman spectroscopy. Finally, a revised RT isothermal phase diagram is discussed based on the findings of this study. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1465285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1465285</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_14652853</originalsourceid><addsrcrecordid>eNqNjsGKwkAQRAdZwaz6D433wCSr0XhbRPEDvMtsp0NGMjMy3YH15qc7ih_gqaiu6keNVFboTZ2vq1p_qUzrssjrSlcT9c180VoX63KZqfu-bQmFIbRwjcQ8RILgQToCljigPA_GN9AbEYsEzc0bZ_H1YZwL3g4OrhSx60M0Qlv4BQzuz3pqgP5TYh15Mf2LkrghUgIlzzI0t5kat6Znmr91qhaH_Wl3zAOLPTNaIewweJ9WnotltSo3q5-PSg89JFLe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of pressure on the structure and lattice dynamics of ammonium perchlorate: A combined experimental and theoretical study</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kroonblawd, Matthew P. ; Koroglu, Batikan ; Zaug, Joseph M. ; Pagoria, Philip F. ; Goldman, Nir ; Greenberg, Eran ; Prakapenka, Vitali B. ; Kunz, Martin ; Bastea, Sorin ; Stavrou, Elissaios</creator><creatorcontrib>Kroonblawd, Matthew P. ; Koroglu, Batikan ; Zaug, Joseph M. ; Pagoria, Philip F. ; Goldman, Nir ; Greenberg, Eran ; Prakapenka, Vitali B. ; Kunz, Martin ; Bastea, Sorin ; Stavrou, Elissaios ; Univ. of Chicago, IL (United States) ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>In this paper, ammonium perchlorate NH4ClO4 (AP) was studied using synchrotron angle-dispersive X-ray powder diffraction (XRPD) and Raman spectroscopy. A diamond-anvil cell was used to compress AP up to 50 GPa at room temperature (RT). Density functional theory (DFT) calculations were performed to provide further insight and comparison to the experimental data. A high-pressure barite-type structure (Phase II) forms at ≈4 GPa and appears stable up to 40 GPa. Refined atomic coordinates for Phase II are provided, and details for the Phase I → II transition mechanics are outlined. Pressure-dependent enthalpies computed for DFT-optimized crystal structures confirm the Phase I → II transition sequence, and the interpolated transition pressure is in excellent agreement with the experiment. Evidence for additional (underlying) structural modifications include a marked decrease in the Phase II b'-axis compressibility starting at 15 GPa and an unambiguous stress relaxation in the normalized stress-strain response at 36 GPa. Above 47 GPa, XRD Bragg peaks begin to decrease in amplitude and broaden. The apparent loss of crystalline long-range order likely signals the onset of amorphization. Three isostructural modifications were discovered within Phase II via Raman spectroscopy. Finally, a revised RT isothermal phase diagram is discussed based on the findings of this study.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>density functional theory ; enthalpy ; inorganic compounds ; ionizing radiation ; MATERIALS SCIENCE ; phase transitions ; Raman spectroscopy ; synchrotrons ; wave mechanics</subject><ispartof>The Journal of chemical physics, 2018-07, Vol.149 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000330522128 ; 0000000216300628 ; 0000000189993800 ; 0000000197699900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1465285$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kroonblawd, Matthew P.</creatorcontrib><creatorcontrib>Koroglu, Batikan</creatorcontrib><creatorcontrib>Zaug, Joseph M.</creatorcontrib><creatorcontrib>Pagoria, Philip F.</creatorcontrib><creatorcontrib>Goldman, Nir</creatorcontrib><creatorcontrib>Greenberg, Eran</creatorcontrib><creatorcontrib>Prakapenka, Vitali B.</creatorcontrib><creatorcontrib>Kunz, Martin</creatorcontrib><creatorcontrib>Bastea, Sorin</creatorcontrib><creatorcontrib>Stavrou, Elissaios</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Effects of pressure on the structure and lattice dynamics of ammonium perchlorate: A combined experimental and theoretical study</title><title>The Journal of chemical physics</title><description>In this paper, ammonium perchlorate NH4ClO4 (AP) was studied using synchrotron angle-dispersive X-ray powder diffraction (XRPD) and Raman spectroscopy. A diamond-anvil cell was used to compress AP up to 50 GPa at room temperature (RT). Density functional theory (DFT) calculations were performed to provide further insight and comparison to the experimental data. A high-pressure barite-type structure (Phase II) forms at ≈4 GPa and appears stable up to 40 GPa. Refined atomic coordinates for Phase II are provided, and details for the Phase I → II transition mechanics are outlined. Pressure-dependent enthalpies computed for DFT-optimized crystal structures confirm the Phase I → II transition sequence, and the interpolated transition pressure is in excellent agreement with the experiment. Evidence for additional (underlying) structural modifications include a marked decrease in the Phase II b'-axis compressibility starting at 15 GPa and an unambiguous stress relaxation in the normalized stress-strain response at 36 GPa. Above 47 GPa, XRD Bragg peaks begin to decrease in amplitude and broaden. The apparent loss of crystalline long-range order likely signals the onset of amorphization. Three isostructural modifications were discovered within Phase II via Raman spectroscopy. Finally, a revised RT isothermal phase diagram is discussed based on the findings of this study.</description><subject>density functional theory</subject><subject>enthalpy</subject><subject>inorganic compounds</subject><subject>ionizing radiation</subject><subject>MATERIALS SCIENCE</subject><subject>phase transitions</subject><subject>Raman spectroscopy</subject><subject>synchrotrons</subject><subject>wave mechanics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNjsGKwkAQRAdZwaz6D433wCSr0XhbRPEDvMtsp0NGMjMy3YH15qc7ih_gqaiu6keNVFboTZ2vq1p_qUzrssjrSlcT9c180VoX63KZqfu-bQmFIbRwjcQ8RILgQToCljigPA_GN9AbEYsEzc0bZ_H1YZwL3g4OrhSx60M0Qlv4BQzuz3pqgP5TYh15Mf2LkrghUgIlzzI0t5kat6Znmr91qhaH_Wl3zAOLPTNaIewweJ9WnotltSo3q5-PSg89JFLe</recordid><startdate>20180718</startdate><enddate>20180718</enddate><creator>Kroonblawd, Matthew P.</creator><creator>Koroglu, Batikan</creator><creator>Zaug, Joseph M.</creator><creator>Pagoria, Philip F.</creator><creator>Goldman, Nir</creator><creator>Greenberg, Eran</creator><creator>Prakapenka, Vitali B.</creator><creator>Kunz, Martin</creator><creator>Bastea, Sorin</creator><creator>Stavrou, Elissaios</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000330522128</orcidid><orcidid>https://orcid.org/0000000216300628</orcidid><orcidid>https://orcid.org/0000000189993800</orcidid><orcidid>https://orcid.org/0000000197699900</orcidid></search><sort><creationdate>20180718</creationdate><title>Effects of pressure on the structure and lattice dynamics of ammonium perchlorate: A combined experimental and theoretical study</title><author>Kroonblawd, Matthew P. ; Koroglu, Batikan ; Zaug, Joseph M. ; Pagoria, Philip F. ; Goldman, Nir ; Greenberg, Eran ; Prakapenka, Vitali B. ; Kunz, Martin ; Bastea, Sorin ; Stavrou, Elissaios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_14652853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>density functional theory</topic><topic>enthalpy</topic><topic>inorganic compounds</topic><topic>ionizing radiation</topic><topic>MATERIALS SCIENCE</topic><topic>phase transitions</topic><topic>Raman spectroscopy</topic><topic>synchrotrons</topic><topic>wave mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kroonblawd, Matthew P.</creatorcontrib><creatorcontrib>Koroglu, Batikan</creatorcontrib><creatorcontrib>Zaug, Joseph M.</creatorcontrib><creatorcontrib>Pagoria, Philip F.</creatorcontrib><creatorcontrib>Goldman, Nir</creatorcontrib><creatorcontrib>Greenberg, Eran</creatorcontrib><creatorcontrib>Prakapenka, Vitali B.</creatorcontrib><creatorcontrib>Kunz, Martin</creatorcontrib><creatorcontrib>Bastea, Sorin</creatorcontrib><creatorcontrib>Stavrou, Elissaios</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kroonblawd, Matthew P.</au><au>Koroglu, Batikan</au><au>Zaug, Joseph M.</au><au>Pagoria, Philip F.</au><au>Goldman, Nir</au><au>Greenberg, Eran</au><au>Prakapenka, Vitali B.</au><au>Kunz, Martin</au><au>Bastea, Sorin</au><au>Stavrou, Elissaios</au><aucorp>Univ. of Chicago, IL (United States)</aucorp><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of pressure on the structure and lattice dynamics of ammonium perchlorate: A combined experimental and theoretical study</atitle><jtitle>The Journal of chemical physics</jtitle><date>2018-07-18</date><risdate>2018</risdate><volume>149</volume><issue>3</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>In this paper, ammonium perchlorate NH4ClO4 (AP) was studied using synchrotron angle-dispersive X-ray powder diffraction (XRPD) and Raman spectroscopy. A diamond-anvil cell was used to compress AP up to 50 GPa at room temperature (RT). Density functional theory (DFT) calculations were performed to provide further insight and comparison to the experimental data. A high-pressure barite-type structure (Phase II) forms at ≈4 GPa and appears stable up to 40 GPa. Refined atomic coordinates for Phase II are provided, and details for the Phase I → II transition mechanics are outlined. Pressure-dependent enthalpies computed for DFT-optimized crystal structures confirm the Phase I → II transition sequence, and the interpolated transition pressure is in excellent agreement with the experiment. Evidence for additional (underlying) structural modifications include a marked decrease in the Phase II b'-axis compressibility starting at 15 GPa and an unambiguous stress relaxation in the normalized stress-strain response at 36 GPa. Above 47 GPa, XRD Bragg peaks begin to decrease in amplitude and broaden. The apparent loss of crystalline long-range order likely signals the onset of amorphization. Three isostructural modifications were discovered within Phase II via Raman spectroscopy. Finally, a revised RT isothermal phase diagram is discussed based on the findings of this study.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000330522128</orcidid><orcidid>https://orcid.org/0000000216300628</orcidid><orcidid>https://orcid.org/0000000189993800</orcidid><orcidid>https://orcid.org/0000000197699900</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2018-07, Vol.149 (3) |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_1465285 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | density functional theory enthalpy inorganic compounds ionizing radiation MATERIALS SCIENCE phase transitions Raman spectroscopy synchrotrons wave mechanics |
title | Effects of pressure on the structure and lattice dynamics of ammonium perchlorate: A combined experimental and theoretical study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20pressure%20on%20the%20structure%20and%20lattice%20dynamics%20of%20ammonium%20perchlorate:%20A%20combined%20experimental%20and%20theoretical%20study&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Kroonblawd,%20Matthew%20P.&rft.aucorp=Univ.%20of%20Chicago,%20IL%20(United%20States)&rft.date=2018-07-18&rft.volume=149&rft.issue=3&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/&rft_dat=%3Costi%3E1465285%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |