Effects of pressure on the structure and lattice dynamics of ammonium perchlorate: A combined experimental and theoretical study

In this paper, ammonium perchlorate NH4ClO4 (AP) was studied using synchrotron angle-dispersive X-ray powder diffraction (XRPD) and Raman spectroscopy. A diamond-anvil cell was used to compress AP up to 50 GPa at room temperature (RT). Density functional theory (DFT) calculations were performed to p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2018-07, Vol.149 (3)
Hauptverfasser: Kroonblawd, Matthew P., Koroglu, Batikan, Zaug, Joseph M., Pagoria, Philip F., Goldman, Nir, Greenberg, Eran, Prakapenka, Vitali B., Kunz, Martin, Bastea, Sorin, Stavrou, Elissaios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title The Journal of chemical physics
container_volume 149
creator Kroonblawd, Matthew P.
Koroglu, Batikan
Zaug, Joseph M.
Pagoria, Philip F.
Goldman, Nir
Greenberg, Eran
Prakapenka, Vitali B.
Kunz, Martin
Bastea, Sorin
Stavrou, Elissaios
description In this paper, ammonium perchlorate NH4ClO4 (AP) was studied using synchrotron angle-dispersive X-ray powder diffraction (XRPD) and Raman spectroscopy. A diamond-anvil cell was used to compress AP up to 50 GPa at room temperature (RT). Density functional theory (DFT) calculations were performed to provide further insight and comparison to the experimental data. A high-pressure barite-type structure (Phase II) forms at ≈4 GPa and appears stable up to 40 GPa. Refined atomic coordinates for Phase II are provided, and details for the Phase I → II transition mechanics are outlined. Pressure-dependent enthalpies computed for DFT-optimized crystal structures confirm the Phase I → II transition sequence, and the interpolated transition pressure is in excellent agreement with the experiment. Evidence for additional (underlying) structural modifications include a marked decrease in the Phase II b'-axis compressibility starting at 15 GPa and an unambiguous stress relaxation in the normalized stress-strain response at 36 GPa. Above 47 GPa, XRD Bragg peaks begin to decrease in amplitude and broaden. The apparent loss of crystalline long-range order likely signals the onset of amorphization. Three isostructural modifications were discovered within Phase II via Raman spectroscopy. Finally, a revised RT isothermal phase diagram is discussed based on the findings of this study.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1465285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1465285</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_14652853</originalsourceid><addsrcrecordid>eNqNjsGKwkAQRAdZwaz6D433wCSr0XhbRPEDvMtsp0NGMjMy3YH15qc7ih_gqaiu6keNVFboTZ2vq1p_qUzrssjrSlcT9c180VoX63KZqfu-bQmFIbRwjcQ8RILgQToCljigPA_GN9AbEYsEzc0bZ_H1YZwL3g4OrhSx60M0Qlv4BQzuz3pqgP5TYh15Mf2LkrghUgIlzzI0t5kat6Znmr91qhaH_Wl3zAOLPTNaIewweJ9WnotltSo3q5-PSg89JFLe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of pressure on the structure and lattice dynamics of ammonium perchlorate: A combined experimental and theoretical study</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kroonblawd, Matthew P. ; Koroglu, Batikan ; Zaug, Joseph M. ; Pagoria, Philip F. ; Goldman, Nir ; Greenberg, Eran ; Prakapenka, Vitali B. ; Kunz, Martin ; Bastea, Sorin ; Stavrou, Elissaios</creator><creatorcontrib>Kroonblawd, Matthew P. ; Koroglu, Batikan ; Zaug, Joseph M. ; Pagoria, Philip F. ; Goldman, Nir ; Greenberg, Eran ; Prakapenka, Vitali B. ; Kunz, Martin ; Bastea, Sorin ; Stavrou, Elissaios ; Univ. of Chicago, IL (United States) ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>In this paper, ammonium perchlorate NH4ClO4 (AP) was studied using synchrotron angle-dispersive X-ray powder diffraction (XRPD) and Raman spectroscopy. A diamond-anvil cell was used to compress AP up to 50 GPa at room temperature (RT). Density functional theory (DFT) calculations were performed to provide further insight and comparison to the experimental data. A high-pressure barite-type structure (Phase II) forms at ≈4 GPa and appears stable up to 40 GPa. Refined atomic coordinates for Phase II are provided, and details for the Phase I → II transition mechanics are outlined. Pressure-dependent enthalpies computed for DFT-optimized crystal structures confirm the Phase I → II transition sequence, and the interpolated transition pressure is in excellent agreement with the experiment. Evidence for additional (underlying) structural modifications include a marked decrease in the Phase II b'-axis compressibility starting at 15 GPa and an unambiguous stress relaxation in the normalized stress-strain response at 36 GPa. Above 47 GPa, XRD Bragg peaks begin to decrease in amplitude and broaden. The apparent loss of crystalline long-range order likely signals the onset of amorphization. Three isostructural modifications were discovered within Phase II via Raman spectroscopy. Finally, a revised RT isothermal phase diagram is discussed based on the findings of this study.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>density functional theory ; enthalpy ; inorganic compounds ; ionizing radiation ; MATERIALS SCIENCE ; phase transitions ; Raman spectroscopy ; synchrotrons ; wave mechanics</subject><ispartof>The Journal of chemical physics, 2018-07, Vol.149 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000330522128 ; 0000000216300628 ; 0000000189993800 ; 0000000197699900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1465285$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kroonblawd, Matthew P.</creatorcontrib><creatorcontrib>Koroglu, Batikan</creatorcontrib><creatorcontrib>Zaug, Joseph M.</creatorcontrib><creatorcontrib>Pagoria, Philip F.</creatorcontrib><creatorcontrib>Goldman, Nir</creatorcontrib><creatorcontrib>Greenberg, Eran</creatorcontrib><creatorcontrib>Prakapenka, Vitali B.</creatorcontrib><creatorcontrib>Kunz, Martin</creatorcontrib><creatorcontrib>Bastea, Sorin</creatorcontrib><creatorcontrib>Stavrou, Elissaios</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Effects of pressure on the structure and lattice dynamics of ammonium perchlorate: A combined experimental and theoretical study</title><title>The Journal of chemical physics</title><description>In this paper, ammonium perchlorate NH4ClO4 (AP) was studied using synchrotron angle-dispersive X-ray powder diffraction (XRPD) and Raman spectroscopy. A diamond-anvil cell was used to compress AP up to 50 GPa at room temperature (RT). Density functional theory (DFT) calculations were performed to provide further insight and comparison to the experimental data. A high-pressure barite-type structure (Phase II) forms at ≈4 GPa and appears stable up to 40 GPa. Refined atomic coordinates for Phase II are provided, and details for the Phase I → II transition mechanics are outlined. Pressure-dependent enthalpies computed for DFT-optimized crystal structures confirm the Phase I → II transition sequence, and the interpolated transition pressure is in excellent agreement with the experiment. Evidence for additional (underlying) structural modifications include a marked decrease in the Phase II b'-axis compressibility starting at 15 GPa and an unambiguous stress relaxation in the normalized stress-strain response at 36 GPa. Above 47 GPa, XRD Bragg peaks begin to decrease in amplitude and broaden. The apparent loss of crystalline long-range order likely signals the onset of amorphization. Three isostructural modifications were discovered within Phase II via Raman spectroscopy. Finally, a revised RT isothermal phase diagram is discussed based on the findings of this study.</description><subject>density functional theory</subject><subject>enthalpy</subject><subject>inorganic compounds</subject><subject>ionizing radiation</subject><subject>MATERIALS SCIENCE</subject><subject>phase transitions</subject><subject>Raman spectroscopy</subject><subject>synchrotrons</subject><subject>wave mechanics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNjsGKwkAQRAdZwaz6D433wCSr0XhbRPEDvMtsp0NGMjMy3YH15qc7ih_gqaiu6keNVFboTZ2vq1p_qUzrssjrSlcT9c180VoX63KZqfu-bQmFIbRwjcQ8RILgQToCljigPA_GN9AbEYsEzc0bZ_H1YZwL3g4OrhSx60M0Qlv4BQzuz3pqgP5TYh15Mf2LkrghUgIlzzI0t5kat6Znmr91qhaH_Wl3zAOLPTNaIewweJ9WnotltSo3q5-PSg89JFLe</recordid><startdate>20180718</startdate><enddate>20180718</enddate><creator>Kroonblawd, Matthew P.</creator><creator>Koroglu, Batikan</creator><creator>Zaug, Joseph M.</creator><creator>Pagoria, Philip F.</creator><creator>Goldman, Nir</creator><creator>Greenberg, Eran</creator><creator>Prakapenka, Vitali B.</creator><creator>Kunz, Martin</creator><creator>Bastea, Sorin</creator><creator>Stavrou, Elissaios</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000330522128</orcidid><orcidid>https://orcid.org/0000000216300628</orcidid><orcidid>https://orcid.org/0000000189993800</orcidid><orcidid>https://orcid.org/0000000197699900</orcidid></search><sort><creationdate>20180718</creationdate><title>Effects of pressure on the structure and lattice dynamics of ammonium perchlorate: A combined experimental and theoretical study</title><author>Kroonblawd, Matthew P. ; Koroglu, Batikan ; Zaug, Joseph M. ; Pagoria, Philip F. ; Goldman, Nir ; Greenberg, Eran ; Prakapenka, Vitali B. ; Kunz, Martin ; Bastea, Sorin ; Stavrou, Elissaios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_14652853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>density functional theory</topic><topic>enthalpy</topic><topic>inorganic compounds</topic><topic>ionizing radiation</topic><topic>MATERIALS SCIENCE</topic><topic>phase transitions</topic><topic>Raman spectroscopy</topic><topic>synchrotrons</topic><topic>wave mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kroonblawd, Matthew P.</creatorcontrib><creatorcontrib>Koroglu, Batikan</creatorcontrib><creatorcontrib>Zaug, Joseph M.</creatorcontrib><creatorcontrib>Pagoria, Philip F.</creatorcontrib><creatorcontrib>Goldman, Nir</creatorcontrib><creatorcontrib>Greenberg, Eran</creatorcontrib><creatorcontrib>Prakapenka, Vitali B.</creatorcontrib><creatorcontrib>Kunz, Martin</creatorcontrib><creatorcontrib>Bastea, Sorin</creatorcontrib><creatorcontrib>Stavrou, Elissaios</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kroonblawd, Matthew P.</au><au>Koroglu, Batikan</au><au>Zaug, Joseph M.</au><au>Pagoria, Philip F.</au><au>Goldman, Nir</au><au>Greenberg, Eran</au><au>Prakapenka, Vitali B.</au><au>Kunz, Martin</au><au>Bastea, Sorin</au><au>Stavrou, Elissaios</au><aucorp>Univ. of Chicago, IL (United States)</aucorp><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of pressure on the structure and lattice dynamics of ammonium perchlorate: A combined experimental and theoretical study</atitle><jtitle>The Journal of chemical physics</jtitle><date>2018-07-18</date><risdate>2018</risdate><volume>149</volume><issue>3</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>In this paper, ammonium perchlorate NH4ClO4 (AP) was studied using synchrotron angle-dispersive X-ray powder diffraction (XRPD) and Raman spectroscopy. A diamond-anvil cell was used to compress AP up to 50 GPa at room temperature (RT). Density functional theory (DFT) calculations were performed to provide further insight and comparison to the experimental data. A high-pressure barite-type structure (Phase II) forms at ≈4 GPa and appears stable up to 40 GPa. Refined atomic coordinates for Phase II are provided, and details for the Phase I → II transition mechanics are outlined. Pressure-dependent enthalpies computed for DFT-optimized crystal structures confirm the Phase I → II transition sequence, and the interpolated transition pressure is in excellent agreement with the experiment. Evidence for additional (underlying) structural modifications include a marked decrease in the Phase II b'-axis compressibility starting at 15 GPa and an unambiguous stress relaxation in the normalized stress-strain response at 36 GPa. Above 47 GPa, XRD Bragg peaks begin to decrease in amplitude and broaden. The apparent loss of crystalline long-range order likely signals the onset of amorphization. Three isostructural modifications were discovered within Phase II via Raman spectroscopy. Finally, a revised RT isothermal phase diagram is discussed based on the findings of this study.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000330522128</orcidid><orcidid>https://orcid.org/0000000216300628</orcidid><orcidid>https://orcid.org/0000000189993800</orcidid><orcidid>https://orcid.org/0000000197699900</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2018-07, Vol.149 (3)
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_1465285
source AIP Journals Complete; Alma/SFX Local Collection
subjects density functional theory
enthalpy
inorganic compounds
ionizing radiation
MATERIALS SCIENCE
phase transitions
Raman spectroscopy
synchrotrons
wave mechanics
title Effects of pressure on the structure and lattice dynamics of ammonium perchlorate: A combined experimental and theoretical study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20pressure%20on%20the%20structure%20and%20lattice%20dynamics%20of%20ammonium%20perchlorate:%20A%20combined%20experimental%20and%20theoretical%20study&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Kroonblawd,%20Matthew%20P.&rft.aucorp=Univ.%20of%20Chicago,%20IL%20(United%20States)&rft.date=2018-07-18&rft.volume=149&rft.issue=3&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/&rft_dat=%3Costi%3E1465285%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true