In situ X-Ray Diffraction of Shock-Compressed Fused Silica

Because of its widespread applications in materials science and geophysics, SiO_{2} has been extensively examined under shock compression. Both quartz and fused silica transform through a so-called "mixed-phase region" to a dense, low compressibility high-pressure phase. For decades, the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2018-03, Vol.120 (13), p.135702-135702, Article 135702
Hauptverfasser: Tracy, Sally June, Turneaure, Stefan J, Duffy, Thomas S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 135702
container_issue 13
container_start_page 135702
container_title Physical review letters
container_volume 120
creator Tracy, Sally June
Turneaure, Stefan J
Duffy, Thomas S
description Because of its widespread applications in materials science and geophysics, SiO_{2} has been extensively examined under shock compression. Both quartz and fused silica transform through a so-called "mixed-phase region" to a dense, low compressibility high-pressure phase. For decades, the nature of this phase has been a subject of debate. Proposed structures include crystalline stishovite, another high-pressure crystalline phase, or a dense amorphous phase. Here we use plate-impact experiments and pulsed synchrotron x-ray diffraction to examine the structure of fused silica shock compressed to 63 GPa. In contrast to recent laser-driven compression experiments, we find that fused silica adopts a dense amorphous structure at 34 GPa and below. When compressed above 34 GPa, fused silica transforms to untextured polycrystalline stishovite. Our results can explain previously ambiguous features of the shock-compression behavior of fused silica and are consistent with recent molecular dynamics simulations. Stishovite grain sizes are estimated to be ∼5-30  nm for compression over a few hundred nanosecond time scale.
doi_str_mv 10.1103/PhysRevLett.120.135702
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1464952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2031421831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-ed5863cd72daa5aeee32222852fa155bc62826d846add050a3f3a71cc55a6b253</originalsourceid><addsrcrecordid>eNp9kctKAzEUhoMotl5eQQbduBnNyW1mcCXVqlBQrIK7kGYyNLWd1ElG6Nv4LD6ZKVNFXJhFAofv_MnJh9AR4DMATM8fpiv_aN5HJoQzILFIeYbJFuoDzoo0A2DbqI8xhbTAOOuhPe9nGGMgIt9FPVKIghEs-ujirv788Da0yUv6qFbJla2qRulgXZ24KhlPnX5NB26xbIz3pkyG7Xof27nV6gDtVGruzeHm3EfPw-unwW06ur-5G1yOUs0YCakpeS6oLjNSKsWVMYaSuHJOKgWcT7QgORFlzoQqS8yxohVVGWjNuRITwuk-Ou5ynQ9Wem2D0VPt6troIIEJVnASodMOWjburTU-yIX12sznqjau9ZLEv2AEcgoRPfmDzlzb1HEESRgFHJ_D-L8UxBwBQqyvFR2lG-d9Yyq5bOxCNSsJWK5NyV-mZDQlO1Ox8WgT304Wpvxp-1ZDvwD65I8f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118361662</pqid></control><display><type>article</type><title>In situ X-Ray Diffraction of Shock-Compressed Fused Silica</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tracy, Sally June ; Turneaure, Stefan J ; Duffy, Thomas S</creator><creatorcontrib>Tracy, Sally June ; Turneaure, Stefan J ; Duffy, Thomas S ; Washington State Univ., Pullman, WA (United States)</creatorcontrib><description>Because of its widespread applications in materials science and geophysics, SiO_{2} has been extensively examined under shock compression. Both quartz and fused silica transform through a so-called "mixed-phase region" to a dense, low compressibility high-pressure phase. For decades, the nature of this phase has been a subject of debate. Proposed structures include crystalline stishovite, another high-pressure crystalline phase, or a dense amorphous phase. Here we use plate-impact experiments and pulsed synchrotron x-ray diffraction to examine the structure of fused silica shock compressed to 63 GPa. In contrast to recent laser-driven compression experiments, we find that fused silica adopts a dense amorphous structure at 34 GPa and below. When compressed above 34 GPa, fused silica transforms to untextured polycrystalline stishovite. Our results can explain previously ambiguous features of the shock-compression behavior of fused silica and are consistent with recent molecular dynamics simulations. Stishovite grain sizes are estimated to be ∼5-30  nm for compression over a few hundred nanosecond time scale.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.120.135702</identifier><identifier>PMID: 29694206</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Compressibility ; Crystal structure ; Crystallinity ; Fused silica ; Geophysics ; GEOSCIENCES ; Grain size ; Materials science ; Molecular dynamics ; Plates (structural members) ; Silica ; Silicon dioxide ; Silicon wafers ; Stishovite ; Synchrotron radiation ; X-ray diffraction</subject><ispartof>Physical review letters, 2018-03, Vol.120 (13), p.135702-135702, Article 135702</ispartof><rights>Copyright American Physical Society Mar 30, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-ed5863cd72daa5aeee32222852fa155bc62826d846add050a3f3a71cc55a6b253</citedby><cites>FETCH-LOGICAL-c442t-ed5863cd72daa5aeee32222852fa155bc62826d846add050a3f3a71cc55a6b253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29694206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1464952$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tracy, Sally June</creatorcontrib><creatorcontrib>Turneaure, Stefan J</creatorcontrib><creatorcontrib>Duffy, Thomas S</creatorcontrib><creatorcontrib>Washington State Univ., Pullman, WA (United States)</creatorcontrib><title>In situ X-Ray Diffraction of Shock-Compressed Fused Silica</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Because of its widespread applications in materials science and geophysics, SiO_{2} has been extensively examined under shock compression. Both quartz and fused silica transform through a so-called "mixed-phase region" to a dense, low compressibility high-pressure phase. For decades, the nature of this phase has been a subject of debate. Proposed structures include crystalline stishovite, another high-pressure crystalline phase, or a dense amorphous phase. Here we use plate-impact experiments and pulsed synchrotron x-ray diffraction to examine the structure of fused silica shock compressed to 63 GPa. In contrast to recent laser-driven compression experiments, we find that fused silica adopts a dense amorphous structure at 34 GPa and below. When compressed above 34 GPa, fused silica transforms to untextured polycrystalline stishovite. Our results can explain previously ambiguous features of the shock-compression behavior of fused silica and are consistent with recent molecular dynamics simulations. Stishovite grain sizes are estimated to be ∼5-30  nm for compression over a few hundred nanosecond time scale.</description><subject>Compressibility</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Fused silica</subject><subject>Geophysics</subject><subject>GEOSCIENCES</subject><subject>Grain size</subject><subject>Materials science</subject><subject>Molecular dynamics</subject><subject>Plates (structural members)</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Silicon wafers</subject><subject>Stishovite</subject><subject>Synchrotron radiation</subject><subject>X-ray diffraction</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kctKAzEUhoMotl5eQQbduBnNyW1mcCXVqlBQrIK7kGYyNLWd1ElG6Nv4LD6ZKVNFXJhFAofv_MnJh9AR4DMATM8fpiv_aN5HJoQzILFIeYbJFuoDzoo0A2DbqI8xhbTAOOuhPe9nGGMgIt9FPVKIghEs-ujirv788Da0yUv6qFbJla2qRulgXZ24KhlPnX5NB26xbIz3pkyG7Xof27nV6gDtVGruzeHm3EfPw-unwW06ur-5G1yOUs0YCakpeS6oLjNSKsWVMYaSuHJOKgWcT7QgORFlzoQqS8yxohVVGWjNuRITwuk-Ou5ynQ9Wem2D0VPt6troIIEJVnASodMOWjburTU-yIX12sznqjau9ZLEv2AEcgoRPfmDzlzb1HEESRgFHJ_D-L8UxBwBQqyvFR2lG-d9Yyq5bOxCNSsJWK5NyV-mZDQlO1Ox8WgT304Wpvxp-1ZDvwD65I8f</recordid><startdate>20180330</startdate><enddate>20180330</enddate><creator>Tracy, Sally June</creator><creator>Turneaure, Stefan J</creator><creator>Duffy, Thomas S</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180330</creationdate><title>In situ X-Ray Diffraction of Shock-Compressed Fused Silica</title><author>Tracy, Sally June ; Turneaure, Stefan J ; Duffy, Thomas S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-ed5863cd72daa5aeee32222852fa155bc62826d846add050a3f3a71cc55a6b253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Compressibility</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Fused silica</topic><topic>Geophysics</topic><topic>GEOSCIENCES</topic><topic>Grain size</topic><topic>Materials science</topic><topic>Molecular dynamics</topic><topic>Plates (structural members)</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Silicon wafers</topic><topic>Stishovite</topic><topic>Synchrotron radiation</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tracy, Sally June</creatorcontrib><creatorcontrib>Turneaure, Stefan J</creatorcontrib><creatorcontrib>Duffy, Thomas S</creatorcontrib><creatorcontrib>Washington State Univ., Pullman, WA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tracy, Sally June</au><au>Turneaure, Stefan J</au><au>Duffy, Thomas S</au><aucorp>Washington State Univ., Pullman, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ X-Ray Diffraction of Shock-Compressed Fused Silica</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2018-03-30</date><risdate>2018</risdate><volume>120</volume><issue>13</issue><spage>135702</spage><epage>135702</epage><pages>135702-135702</pages><artnum>135702</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Because of its widespread applications in materials science and geophysics, SiO_{2} has been extensively examined under shock compression. Both quartz and fused silica transform through a so-called "mixed-phase region" to a dense, low compressibility high-pressure phase. For decades, the nature of this phase has been a subject of debate. Proposed structures include crystalline stishovite, another high-pressure crystalline phase, or a dense amorphous phase. Here we use plate-impact experiments and pulsed synchrotron x-ray diffraction to examine the structure of fused silica shock compressed to 63 GPa. In contrast to recent laser-driven compression experiments, we find that fused silica adopts a dense amorphous structure at 34 GPa and below. When compressed above 34 GPa, fused silica transforms to untextured polycrystalline stishovite. Our results can explain previously ambiguous features of the shock-compression behavior of fused silica and are consistent with recent molecular dynamics simulations. Stishovite grain sizes are estimated to be ∼5-30  nm for compression over a few hundred nanosecond time scale.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>29694206</pmid><doi>10.1103/PhysRevLett.120.135702</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2018-03, Vol.120 (13), p.135702-135702, Article 135702
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_1464952
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Compressibility
Crystal structure
Crystallinity
Fused silica
Geophysics
GEOSCIENCES
Grain size
Materials science
Molecular dynamics
Plates (structural members)
Silica
Silicon dioxide
Silicon wafers
Stishovite
Synchrotron radiation
X-ray diffraction
title In situ X-Ray Diffraction of Shock-Compressed Fused Silica
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T00%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%C2%A0situ%20X-Ray%20Diffraction%20of%20Shock-Compressed%20Fused%20Silica&rft.jtitle=Physical%20review%20letters&rft.au=Tracy,%20Sally%20June&rft.aucorp=Washington%20State%20Univ.,%20Pullman,%20WA%20(United%20States)&rft.date=2018-03-30&rft.volume=120&rft.issue=13&rft.spage=135702&rft.epage=135702&rft.pages=135702-135702&rft.artnum=135702&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.120.135702&rft_dat=%3Cproquest_osti_%3E2031421831%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118361662&rft_id=info:pmid/29694206&rfr_iscdi=true