Probing long-range ordering in nickel-base alloys with proton irradiation

Twelve commercial-grade austenitic alloys based on the Ni-Cr-Mo-Fe quaternary system were irradiated using 2 MeV protons at 360 °C to a damage level of 2.5 displacements per atom (dpa). Long-range ordered (Pt2Mo-type) precipitation under proton irradiation was observed, for the first time, in alloys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2018-09, Vol.156, p.446-462
Hauptverfasser: Song, Miao, Yang, Ying, Wang, Mi, Kuang, Wenjun, Lear, Calvin R., Was, Gary S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Twelve commercial-grade austenitic alloys based on the Ni-Cr-Mo-Fe quaternary system were irradiated using 2 MeV protons at 360 °C to a damage level of 2.5 displacements per atom (dpa). Long-range ordered (Pt2Mo-type) precipitation under proton irradiation was observed, for the first time, in alloys C22, 625, 625P, 625D, 725, and 690. No relevant short-range ordering was observed. These irradiation-enhanced long-range ordered precipitates are coherent with the matrix despite their irregular shape. Of the potential influences on long-range ordering (Ni:Cr, and Ni:(Cr + Mo) ratios, Mo, and iron concentration), Fe content was the strongest by far. The volume fraction of LRO decreases with increasing Fe content by virtue of its role as a stabilizer of the disordered FCC phase, thus reducing the energy savings from ordering. The observed effects of Fe on long-range ordering show qualitative agreement with predictions from thermodynamic modeling. Although solid state diffusion kinetics dominate long-range ordering under purely thermal conditions, ordering under irradiation here (∼ 2.5dpa) is controlled by the thermodynamic driving force. Proton irradiation thus offers a unique approach for studying the low temperature phase transformation in a thermodynamically favored, but kinetically constrained condition. [Display omitted]
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2018.06.043