Evapotranspiration and water yield of a pine‐broadleaf forest are not altered by long‐term atmospheric [CO2] enrichment under native or enhanced soil fertility
Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases in surface runoff observed over the past century have been attributed to increasing atmospheric CO2 concentrations resulting in reduced ET b...
Gespeichert in:
Veröffentlicht in: | Global change biology 2018-10, Vol.24 (10), p.4841-4856 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4856 |
---|---|
container_issue | 10 |
container_start_page | 4841 |
container_title | Global change biology |
container_volume | 24 |
creator | Ward, Eric J. Oren, Ram Seok Kim, Hyun Kim, Dohyoung Tor‐ngern, Pantana Ewers, Brent E. McCarthy, Heather R. Oishi, Andrew Christopher Pataki, Diane E. Palmroth, Sari Phillips, Nathan G. Schäfer, Karina V. R. |
description | Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases in surface runoff observed over the past century have been attributed to increasing atmospheric CO2 concentrations resulting in reduced ET by terrestrial ecosystems. Here, we evaluate the water balance of a Pinus taeda (L.) forest with a broadleaf component that was exposed to atmospheric [CO2] enrichment (ECO2; +200 ppm) for over 17 years and fertilization for 6 years, monitored with hundreds of environmental and sap flux sensors on a half‐hourly basis. These measurements were synthesized using a one‐dimensional Richard's equation model to evaluate treatment differences in transpiration (T), evaporation (E), ET, and WY. We found that ECO2 did not create significant differences in stand T, ET, or WY under either native or enhanced soil fertility, despite a 20% and 13% increase in leaf area index, respectively. While T, ET, and WY responded to fertilization, this response was weak ( |
doi_str_mv | 10.1111/gcb.14363 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1462779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112408478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4153-367c9ded0983364ae9c364d0c49cc42e7b759d3c9eac62a977b8074efa16e0ab3</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhSMEoqWw4AWQBRtYpPXfteNluSoFqVI3sELIcuxJr6vEDrbT6u54BN6BN-NJcElhgYQ3Z0b-fEae0zTPCT4m9Zxc2f6YcCbYg-aQMLFpKe_Ew7t6w1uCCTtonuR8jTFmFIvHzQFViitK8WHz4-zGzLEkE_Lskyk-BmSCQ7emQEJ7D6NDcUAGzT7Az2_f-xSNG8EMaIgJckEmAQqx6lgfgEP9Ho0xXFW09hMyZYp53kHyFn3eXtIvCEKtdxOEgpbg6pBQp94Aiqle7Uyw1SRHP6IBUvGjL_unzaPBjBme3etR8-nd2cft-_bi8vzD9vSitZxsWMuEtMqBw6pjTHADylZx2HJlLacge7lRjlkFxgpqlJR9hyWHwRAB2PTsqHm5-sZcvM7WF7A7G0MAWzThgkqpKvR6heYUvy51A3ry2cI4mgBxybouGHdS0I5X9NU_6HVcUqhf0JQQynHHZVepNytlU8w5waDn5CeT9ppgfRevrvHq3_FW9sW949JP4P6Sf_KswMkK3PoR9v930ufbt6vlLxIdsnw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112408478</pqid></control><display><type>article</type><title>Evapotranspiration and water yield of a pine‐broadleaf forest are not altered by long‐term atmospheric [CO2] enrichment under native or enhanced soil fertility</title><source>MEDLINE</source><source>Wiley Online Library (Online service)</source><creator>Ward, Eric J. ; Oren, Ram ; Seok Kim, Hyun ; Kim, Dohyoung ; Tor‐ngern, Pantana ; Ewers, Brent E. ; McCarthy, Heather R. ; Oishi, Andrew Christopher ; Pataki, Diane E. ; Palmroth, Sari ; Phillips, Nathan G. ; Schäfer, Karina V. R.</creator><creatorcontrib>Ward, Eric J. ; Oren, Ram ; Seok Kim, Hyun ; Kim, Dohyoung ; Tor‐ngern, Pantana ; Ewers, Brent E. ; McCarthy, Heather R. ; Oishi, Andrew Christopher ; Pataki, Diane E. ; Palmroth, Sari ; Phillips, Nathan G. ; Schäfer, Karina V. R.</creatorcontrib><description>Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases in surface runoff observed over the past century have been attributed to increasing atmospheric CO2 concentrations resulting in reduced ET by terrestrial ecosystems. Here, we evaluate the water balance of a Pinus taeda (L.) forest with a broadleaf component that was exposed to atmospheric [CO2] enrichment (ECO2; +200 ppm) for over 17 years and fertilization for 6 years, monitored with hundreds of environmental and sap flux sensors on a half‐hourly basis. These measurements were synthesized using a one‐dimensional Richard's equation model to evaluate treatment differences in transpiration (T), evaporation (E), ET, and WY. We found that ECO2 did not create significant differences in stand T, ET, or WY under either native or enhanced soil fertility, despite a 20% and 13% increase in leaf area index, respectively. While T, ET, and WY responded to fertilization, this response was weak (<3% of mean annual precipitation). Likewise, while E responded to ECO2 in the first 7 years of the study, this effect was of negligible magnitude (<1% mean annual precipitation). Given the global range of conifers similar to P. taeda, our results imply that recent observations of increased global streamflow cannot be attributed to decreases in ET across all ecosystems, demonstrating a great need for model–data synthesis activities to incorporate our current understanding of terrestrial vegetation in global water cycle models.
Here we evaluate the water balance of a Pinus taeda (L.) forest with a broadleaf component that was exposed to atmospheric [CO2] enrichment (ECO2; +200 ppm) for over 17 years and fertilization for 6 years, monitored with hundreds of environmental and sap flux sensors on a half‐hourly basis. We found that ECO2 did not create significant differences in stand evapotranspiration (ET) or water yield under either native or enhanced soil fertility, despite a 20% and 13% increase in leaf area index, respectively. Given the global range of conifers similar to P. taeda, our results imply that recent observations of increased global streamflow cannot be attributed to decreases in ET across all ecosystems, demonstrating a great need for model‐data synthesis activities to incorporate our current understanding of terrestrial vegetation in global water cycle models.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.14363</identifier><identifier>PMID: 29949220</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Annual precipitation ; Atmospheric models ; Biological fertilization ; Carbon dioxide ; Carbon Dioxide - metabolism ; Conifers ; Ecosystem ; Ecosystems ; Environmental monitoring ; Evaporation ; Evapotranspiration ; Fertility ; Fertilization ; Forests ; Hydrologic cycle ; Hydrological cycle ; Leaf area ; Leaf area index ; Pine trees ; Pinus taeda ; Pinus taeda - metabolism ; Plant Leaves - physiology ; Plant Transpiration ; Precipitation ; Runoff ; Soil ; Soil - chemistry ; Soil fertility ; Stream discharge ; Stream flow ; Surface runoff ; Terrestrial ecosystems ; Transpiration ; Water - metabolism ; Water balance ; Water yield</subject><ispartof>Global change biology, 2018-10, Vol.24 (10), p.4841-4856</ispartof><rights>2018 John Wiley & Sons Ltd</rights><rights>2018 John Wiley & Sons Ltd.</rights><rights>Copyright © 2018 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4153-367c9ded0983364ae9c364d0c49cc42e7b759d3c9eac62a977b8074efa16e0ab3</citedby><cites>FETCH-LOGICAL-c4153-367c9ded0983364ae9c364d0c49cc42e7b759d3c9eac62a977b8074efa16e0ab3</cites><orcidid>0000-0002-6499-8370 ; 0000-0001-5064-4080 ; 0000-0002-5047-5464 ; 0000000150644080 ; 0000000250475464 ; 0000000264998370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.14363$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.14363$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29949220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1462779$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ward, Eric J.</creatorcontrib><creatorcontrib>Oren, Ram</creatorcontrib><creatorcontrib>Seok Kim, Hyun</creatorcontrib><creatorcontrib>Kim, Dohyoung</creatorcontrib><creatorcontrib>Tor‐ngern, Pantana</creatorcontrib><creatorcontrib>Ewers, Brent E.</creatorcontrib><creatorcontrib>McCarthy, Heather R.</creatorcontrib><creatorcontrib>Oishi, Andrew Christopher</creatorcontrib><creatorcontrib>Pataki, Diane E.</creatorcontrib><creatorcontrib>Palmroth, Sari</creatorcontrib><creatorcontrib>Phillips, Nathan G.</creatorcontrib><creatorcontrib>Schäfer, Karina V. R.</creatorcontrib><title>Evapotranspiration and water yield of a pine‐broadleaf forest are not altered by long‐term atmospheric [CO2] enrichment under native or enhanced soil fertility</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases in surface runoff observed over the past century have been attributed to increasing atmospheric CO2 concentrations resulting in reduced ET by terrestrial ecosystems. Here, we evaluate the water balance of a Pinus taeda (L.) forest with a broadleaf component that was exposed to atmospheric [CO2] enrichment (ECO2; +200 ppm) for over 17 years and fertilization for 6 years, monitored with hundreds of environmental and sap flux sensors on a half‐hourly basis. These measurements were synthesized using a one‐dimensional Richard's equation model to evaluate treatment differences in transpiration (T), evaporation (E), ET, and WY. We found that ECO2 did not create significant differences in stand T, ET, or WY under either native or enhanced soil fertility, despite a 20% and 13% increase in leaf area index, respectively. While T, ET, and WY responded to fertilization, this response was weak (<3% of mean annual precipitation). Likewise, while E responded to ECO2 in the first 7 years of the study, this effect was of negligible magnitude (<1% mean annual precipitation). Given the global range of conifers similar to P. taeda, our results imply that recent observations of increased global streamflow cannot be attributed to decreases in ET across all ecosystems, demonstrating a great need for model–data synthesis activities to incorporate our current understanding of terrestrial vegetation in global water cycle models.
Here we evaluate the water balance of a Pinus taeda (L.) forest with a broadleaf component that was exposed to atmospheric [CO2] enrichment (ECO2; +200 ppm) for over 17 years and fertilization for 6 years, monitored with hundreds of environmental and sap flux sensors on a half‐hourly basis. We found that ECO2 did not create significant differences in stand evapotranspiration (ET) or water yield under either native or enhanced soil fertility, despite a 20% and 13% increase in leaf area index, respectively. Given the global range of conifers similar to P. taeda, our results imply that recent observations of increased global streamflow cannot be attributed to decreases in ET across all ecosystems, demonstrating a great need for model‐data synthesis activities to incorporate our current understanding of terrestrial vegetation in global water cycle models.</description><subject>Annual precipitation</subject><subject>Atmospheric models</subject><subject>Biological fertilization</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Conifers</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Environmental monitoring</subject><subject>Evaporation</subject><subject>Evapotranspiration</subject><subject>Fertility</subject><subject>Fertilization</subject><subject>Forests</subject><subject>Hydrologic cycle</subject><subject>Hydrological cycle</subject><subject>Leaf area</subject><subject>Leaf area index</subject><subject>Pine trees</subject><subject>Pinus taeda</subject><subject>Pinus taeda - metabolism</subject><subject>Plant Leaves - physiology</subject><subject>Plant Transpiration</subject><subject>Precipitation</subject><subject>Runoff</subject><subject>Soil</subject><subject>Soil - chemistry</subject><subject>Soil fertility</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Surface runoff</subject><subject>Terrestrial ecosystems</subject><subject>Transpiration</subject><subject>Water - metabolism</subject><subject>Water balance</subject><subject>Water yield</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1TAQhSMEoqWw4AWQBRtYpPXfteNluSoFqVI3sELIcuxJr6vEDrbT6u54BN6BN-NJcElhgYQ3Z0b-fEae0zTPCT4m9Zxc2f6YcCbYg-aQMLFpKe_Ew7t6w1uCCTtonuR8jTFmFIvHzQFViitK8WHz4-zGzLEkE_Lskyk-BmSCQ7emQEJ7D6NDcUAGzT7Az2_f-xSNG8EMaIgJckEmAQqx6lgfgEP9Ho0xXFW09hMyZYp53kHyFn3eXtIvCEKtdxOEgpbg6pBQp94Aiqle7Uyw1SRHP6IBUvGjL_unzaPBjBme3etR8-nd2cft-_bi8vzD9vSitZxsWMuEtMqBw6pjTHADylZx2HJlLacge7lRjlkFxgpqlJR9hyWHwRAB2PTsqHm5-sZcvM7WF7A7G0MAWzThgkqpKvR6heYUvy51A3ry2cI4mgBxybouGHdS0I5X9NU_6HVcUqhf0JQQynHHZVepNytlU8w5waDn5CeT9ppgfRevrvHq3_FW9sW949JP4P6Sf_KswMkK3PoR9v930ufbt6vlLxIdsnw</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Ward, Eric J.</creator><creator>Oren, Ram</creator><creator>Seok Kim, Hyun</creator><creator>Kim, Dohyoung</creator><creator>Tor‐ngern, Pantana</creator><creator>Ewers, Brent E.</creator><creator>McCarthy, Heather R.</creator><creator>Oishi, Andrew Christopher</creator><creator>Pataki, Diane E.</creator><creator>Palmroth, Sari</creator><creator>Phillips, Nathan G.</creator><creator>Schäfer, Karina V. R.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6499-8370</orcidid><orcidid>https://orcid.org/0000-0001-5064-4080</orcidid><orcidid>https://orcid.org/0000-0002-5047-5464</orcidid><orcidid>https://orcid.org/0000000150644080</orcidid><orcidid>https://orcid.org/0000000250475464</orcidid><orcidid>https://orcid.org/0000000264998370</orcidid></search><sort><creationdate>201810</creationdate><title>Evapotranspiration and water yield of a pine‐broadleaf forest are not altered by long‐term atmospheric [CO2] enrichment under native or enhanced soil fertility</title><author>Ward, Eric J. ; Oren, Ram ; Seok Kim, Hyun ; Kim, Dohyoung ; Tor‐ngern, Pantana ; Ewers, Brent E. ; McCarthy, Heather R. ; Oishi, Andrew Christopher ; Pataki, Diane E. ; Palmroth, Sari ; Phillips, Nathan G. ; Schäfer, Karina V. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4153-367c9ded0983364ae9c364d0c49cc42e7b759d3c9eac62a977b8074efa16e0ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annual precipitation</topic><topic>Atmospheric models</topic><topic>Biological fertilization</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Conifers</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Environmental monitoring</topic><topic>Evaporation</topic><topic>Evapotranspiration</topic><topic>Fertility</topic><topic>Fertilization</topic><topic>Forests</topic><topic>Hydrologic cycle</topic><topic>Hydrological cycle</topic><topic>Leaf area</topic><topic>Leaf area index</topic><topic>Pine trees</topic><topic>Pinus taeda</topic><topic>Pinus taeda - metabolism</topic><topic>Plant Leaves - physiology</topic><topic>Plant Transpiration</topic><topic>Precipitation</topic><topic>Runoff</topic><topic>Soil</topic><topic>Soil - chemistry</topic><topic>Soil fertility</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Surface runoff</topic><topic>Terrestrial ecosystems</topic><topic>Transpiration</topic><topic>Water - metabolism</topic><topic>Water balance</topic><topic>Water yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ward, Eric J.</creatorcontrib><creatorcontrib>Oren, Ram</creatorcontrib><creatorcontrib>Seok Kim, Hyun</creatorcontrib><creatorcontrib>Kim, Dohyoung</creatorcontrib><creatorcontrib>Tor‐ngern, Pantana</creatorcontrib><creatorcontrib>Ewers, Brent E.</creatorcontrib><creatorcontrib>McCarthy, Heather R.</creatorcontrib><creatorcontrib>Oishi, Andrew Christopher</creatorcontrib><creatorcontrib>Pataki, Diane E.</creatorcontrib><creatorcontrib>Palmroth, Sari</creatorcontrib><creatorcontrib>Phillips, Nathan G.</creatorcontrib><creatorcontrib>Schäfer, Karina V. R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ward, Eric J.</au><au>Oren, Ram</au><au>Seok Kim, Hyun</au><au>Kim, Dohyoung</au><au>Tor‐ngern, Pantana</au><au>Ewers, Brent E.</au><au>McCarthy, Heather R.</au><au>Oishi, Andrew Christopher</au><au>Pataki, Diane E.</au><au>Palmroth, Sari</au><au>Phillips, Nathan G.</au><au>Schäfer, Karina V. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evapotranspiration and water yield of a pine‐broadleaf forest are not altered by long‐term atmospheric [CO2] enrichment under native or enhanced soil fertility</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2018-10</date><risdate>2018</risdate><volume>24</volume><issue>10</issue><spage>4841</spage><epage>4856</epage><pages>4841-4856</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases in surface runoff observed over the past century have been attributed to increasing atmospheric CO2 concentrations resulting in reduced ET by terrestrial ecosystems. Here, we evaluate the water balance of a Pinus taeda (L.) forest with a broadleaf component that was exposed to atmospheric [CO2] enrichment (ECO2; +200 ppm) for over 17 years and fertilization for 6 years, monitored with hundreds of environmental and sap flux sensors on a half‐hourly basis. These measurements were synthesized using a one‐dimensional Richard's equation model to evaluate treatment differences in transpiration (T), evaporation (E), ET, and WY. We found that ECO2 did not create significant differences in stand T, ET, or WY under either native or enhanced soil fertility, despite a 20% and 13% increase in leaf area index, respectively. While T, ET, and WY responded to fertilization, this response was weak (<3% of mean annual precipitation). Likewise, while E responded to ECO2 in the first 7 years of the study, this effect was of negligible magnitude (<1% mean annual precipitation). Given the global range of conifers similar to P. taeda, our results imply that recent observations of increased global streamflow cannot be attributed to decreases in ET across all ecosystems, demonstrating a great need for model–data synthesis activities to incorporate our current understanding of terrestrial vegetation in global water cycle models.
Here we evaluate the water balance of a Pinus taeda (L.) forest with a broadleaf component that was exposed to atmospheric [CO2] enrichment (ECO2; +200 ppm) for over 17 years and fertilization for 6 years, monitored with hundreds of environmental and sap flux sensors on a half‐hourly basis. We found that ECO2 did not create significant differences in stand evapotranspiration (ET) or water yield under either native or enhanced soil fertility, despite a 20% and 13% increase in leaf area index, respectively. Given the global range of conifers similar to P. taeda, our results imply that recent observations of increased global streamflow cannot be attributed to decreases in ET across all ecosystems, demonstrating a great need for model‐data synthesis activities to incorporate our current understanding of terrestrial vegetation in global water cycle models.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>29949220</pmid><doi>10.1111/gcb.14363</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6499-8370</orcidid><orcidid>https://orcid.org/0000-0001-5064-4080</orcidid><orcidid>https://orcid.org/0000-0002-5047-5464</orcidid><orcidid>https://orcid.org/0000000150644080</orcidid><orcidid>https://orcid.org/0000000250475464</orcidid><orcidid>https://orcid.org/0000000264998370</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1354-1013 |
ispartof | Global change biology, 2018-10, Vol.24 (10), p.4841-4856 |
issn | 1354-1013 1365-2486 |
language | eng |
recordid | cdi_osti_scitechconnect_1462779 |
source | MEDLINE; Wiley Online Library (Online service) |
subjects | Annual precipitation Atmospheric models Biological fertilization Carbon dioxide Carbon Dioxide - metabolism Conifers Ecosystem Ecosystems Environmental monitoring Evaporation Evapotranspiration Fertility Fertilization Forests Hydrologic cycle Hydrological cycle Leaf area Leaf area index Pine trees Pinus taeda Pinus taeda - metabolism Plant Leaves - physiology Plant Transpiration Precipitation Runoff Soil Soil - chemistry Soil fertility Stream discharge Stream flow Surface runoff Terrestrial ecosystems Transpiration Water - metabolism Water balance Water yield |
title | Evapotranspiration and water yield of a pine‐broadleaf forest are not altered by long‐term atmospheric [CO2] enrichment under native or enhanced soil fertility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A44%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evapotranspiration%20and%20water%20yield%20of%20a%20pine%E2%80%90broadleaf%20forest%20are%20not%20altered%20by%20long%E2%80%90term%20atmospheric%20%5BCO2%5D%20enrichment%20under%20native%20or%20enhanced%20soil%20fertility&rft.jtitle=Global%20change%20biology&rft.au=Ward,%20Eric%20J.&rft.date=2018-10&rft.volume=24&rft.issue=10&rft.spage=4841&rft.epage=4856&rft.pages=4841-4856&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.14363&rft_dat=%3Cproquest_osti_%3E2112408478%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112408478&rft_id=info:pmid/29949220&rfr_iscdi=true |