Evapotranspiration and water yield of a pine‐broadleaf forest are not altered by long‐term atmospheric [CO2] enrichment under native or enhanced soil fertility

Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases in surface runoff observed over the past century have been attributed to increasing atmospheric CO2 concentrations resulting in reduced ET b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2018-10, Vol.24 (10), p.4841-4856
Hauptverfasser: Ward, Eric J., Oren, Ram, Seok Kim, Hyun, Kim, Dohyoung, Tor‐ngern, Pantana, Ewers, Brent E., McCarthy, Heather R., Oishi, Andrew Christopher, Pataki, Diane E., Palmroth, Sari, Phillips, Nathan G., Schäfer, Karina V. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4856
container_issue 10
container_start_page 4841
container_title Global change biology
container_volume 24
creator Ward, Eric J.
Oren, Ram
Seok Kim, Hyun
Kim, Dohyoung
Tor‐ngern, Pantana
Ewers, Brent E.
McCarthy, Heather R.
Oishi, Andrew Christopher
Pataki, Diane E.
Palmroth, Sari
Phillips, Nathan G.
Schäfer, Karina V. R.
description Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases in surface runoff observed over the past century have been attributed to increasing atmospheric CO2 concentrations resulting in reduced ET by terrestrial ecosystems. Here, we evaluate the water balance of a Pinus taeda (L.) forest with a broadleaf component that was exposed to atmospheric [CO2] enrichment (ECO2; +200 ppm) for over 17 years and fertilization for 6 years, monitored with hundreds of environmental and sap flux sensors on a half‐hourly basis. These measurements were synthesized using a one‐dimensional Richard's equation model to evaluate treatment differences in transpiration (T), evaporation (E), ET, and WY. We found that ECO2 did not create significant differences in stand T, ET, or WY under either native or enhanced soil fertility, despite a 20% and 13% increase in leaf area index, respectively. While T, ET, and WY responded to fertilization, this response was weak (
doi_str_mv 10.1111/gcb.14363
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1462779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112408478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4153-367c9ded0983364ae9c364d0c49cc42e7b759d3c9eac62a977b8074efa16e0ab3</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhSMEoqWw4AWQBRtYpPXfteNluSoFqVI3sELIcuxJr6vEDrbT6u54BN6BN-NJcElhgYQ3Z0b-fEae0zTPCT4m9Zxc2f6YcCbYg-aQMLFpKe_Ew7t6w1uCCTtonuR8jTFmFIvHzQFViitK8WHz4-zGzLEkE_Lskyk-BmSCQ7emQEJ7D6NDcUAGzT7Az2_f-xSNG8EMaIgJckEmAQqx6lgfgEP9Ho0xXFW09hMyZYp53kHyFn3eXtIvCEKtdxOEgpbg6pBQp94Aiqle7Uyw1SRHP6IBUvGjL_unzaPBjBme3etR8-nd2cft-_bi8vzD9vSitZxsWMuEtMqBw6pjTHADylZx2HJlLacge7lRjlkFxgpqlJR9hyWHwRAB2PTsqHm5-sZcvM7WF7A7G0MAWzThgkqpKvR6heYUvy51A3ry2cI4mgBxybouGHdS0I5X9NU_6HVcUqhf0JQQynHHZVepNytlU8w5waDn5CeT9ppgfRevrvHq3_FW9sW949JP4P6Sf_KswMkK3PoR9v930ufbt6vlLxIdsnw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112408478</pqid></control><display><type>article</type><title>Evapotranspiration and water yield of a pine‐broadleaf forest are not altered by long‐term atmospheric [CO2] enrichment under native or enhanced soil fertility</title><source>MEDLINE</source><source>Wiley Online Library (Online service)</source><creator>Ward, Eric J. ; Oren, Ram ; Seok Kim, Hyun ; Kim, Dohyoung ; Tor‐ngern, Pantana ; Ewers, Brent E. ; McCarthy, Heather R. ; Oishi, Andrew Christopher ; Pataki, Diane E. ; Palmroth, Sari ; Phillips, Nathan G. ; Schäfer, Karina V. R.</creator><creatorcontrib>Ward, Eric J. ; Oren, Ram ; Seok Kim, Hyun ; Kim, Dohyoung ; Tor‐ngern, Pantana ; Ewers, Brent E. ; McCarthy, Heather R. ; Oishi, Andrew Christopher ; Pataki, Diane E. ; Palmroth, Sari ; Phillips, Nathan G. ; Schäfer, Karina V. R.</creatorcontrib><description>Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases in surface runoff observed over the past century have been attributed to increasing atmospheric CO2 concentrations resulting in reduced ET by terrestrial ecosystems. Here, we evaluate the water balance of a Pinus taeda (L.) forest with a broadleaf component that was exposed to atmospheric [CO2] enrichment (ECO2; +200 ppm) for over 17 years and fertilization for 6 years, monitored with hundreds of environmental and sap flux sensors on a half‐hourly basis. These measurements were synthesized using a one‐dimensional Richard's equation model to evaluate treatment differences in transpiration (T), evaporation (E), ET, and WY. We found that ECO2 did not create significant differences in stand T, ET, or WY under either native or enhanced soil fertility, despite a 20% and 13% increase in leaf area index, respectively. While T, ET, and WY responded to fertilization, this response was weak (&lt;3% of mean annual precipitation). Likewise, while E responded to ECO2 in the first 7 years of the study, this effect was of negligible magnitude (&lt;1% mean annual precipitation). Given the global range of conifers similar to P. taeda, our results imply that recent observations of increased global streamflow cannot be attributed to decreases in ET across all ecosystems, demonstrating a great need for model–data synthesis activities to incorporate our current understanding of terrestrial vegetation in global water cycle models. Here we evaluate the water balance of a Pinus taeda (L.) forest with a broadleaf component that was exposed to atmospheric [CO2] enrichment (ECO2; +200 ppm) for over 17 years and fertilization for 6 years, monitored with hundreds of environmental and sap flux sensors on a half‐hourly basis. We found that ECO2 did not create significant differences in stand evapotranspiration (ET) or water yield under either native or enhanced soil fertility, despite a 20% and 13% increase in leaf area index, respectively. Given the global range of conifers similar to P. taeda, our results imply that recent observations of increased global streamflow cannot be attributed to decreases in ET across all ecosystems, demonstrating a great need for model‐data synthesis activities to incorporate our current understanding of terrestrial vegetation in global water cycle models.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.14363</identifier><identifier>PMID: 29949220</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Annual precipitation ; Atmospheric models ; Biological fertilization ; Carbon dioxide ; Carbon Dioxide - metabolism ; Conifers ; Ecosystem ; Ecosystems ; Environmental monitoring ; Evaporation ; Evapotranspiration ; Fertility ; Fertilization ; Forests ; Hydrologic cycle ; Hydrological cycle ; Leaf area ; Leaf area index ; Pine trees ; Pinus taeda ; Pinus taeda - metabolism ; Plant Leaves - physiology ; Plant Transpiration ; Precipitation ; Runoff ; Soil ; Soil - chemistry ; Soil fertility ; Stream discharge ; Stream flow ; Surface runoff ; Terrestrial ecosystems ; Transpiration ; Water - metabolism ; Water balance ; Water yield</subject><ispartof>Global change biology, 2018-10, Vol.24 (10), p.4841-4856</ispartof><rights>2018 John Wiley &amp; Sons Ltd</rights><rights>2018 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4153-367c9ded0983364ae9c364d0c49cc42e7b759d3c9eac62a977b8074efa16e0ab3</citedby><cites>FETCH-LOGICAL-c4153-367c9ded0983364ae9c364d0c49cc42e7b759d3c9eac62a977b8074efa16e0ab3</cites><orcidid>0000-0002-6499-8370 ; 0000-0001-5064-4080 ; 0000-0002-5047-5464 ; 0000000150644080 ; 0000000250475464 ; 0000000264998370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.14363$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.14363$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29949220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1462779$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ward, Eric J.</creatorcontrib><creatorcontrib>Oren, Ram</creatorcontrib><creatorcontrib>Seok Kim, Hyun</creatorcontrib><creatorcontrib>Kim, Dohyoung</creatorcontrib><creatorcontrib>Tor‐ngern, Pantana</creatorcontrib><creatorcontrib>Ewers, Brent E.</creatorcontrib><creatorcontrib>McCarthy, Heather R.</creatorcontrib><creatorcontrib>Oishi, Andrew Christopher</creatorcontrib><creatorcontrib>Pataki, Diane E.</creatorcontrib><creatorcontrib>Palmroth, Sari</creatorcontrib><creatorcontrib>Phillips, Nathan G.</creatorcontrib><creatorcontrib>Schäfer, Karina V. R.</creatorcontrib><title>Evapotranspiration and water yield of a pine‐broadleaf forest are not altered by long‐term atmospheric [CO2] enrichment under native or enhanced soil fertility</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases in surface runoff observed over the past century have been attributed to increasing atmospheric CO2 concentrations resulting in reduced ET by terrestrial ecosystems. Here, we evaluate the water balance of a Pinus taeda (L.) forest with a broadleaf component that was exposed to atmospheric [CO2] enrichment (ECO2; +200 ppm) for over 17 years and fertilization for 6 years, monitored with hundreds of environmental and sap flux sensors on a half‐hourly basis. These measurements were synthesized using a one‐dimensional Richard's equation model to evaluate treatment differences in transpiration (T), evaporation (E), ET, and WY. We found that ECO2 did not create significant differences in stand T, ET, or WY under either native or enhanced soil fertility, despite a 20% and 13% increase in leaf area index, respectively. While T, ET, and WY responded to fertilization, this response was weak (&lt;3% of mean annual precipitation). Likewise, while E responded to ECO2 in the first 7 years of the study, this effect was of negligible magnitude (&lt;1% mean annual precipitation). Given the global range of conifers similar to P. taeda, our results imply that recent observations of increased global streamflow cannot be attributed to decreases in ET across all ecosystems, demonstrating a great need for model–data synthesis activities to incorporate our current understanding of terrestrial vegetation in global water cycle models. Here we evaluate the water balance of a Pinus taeda (L.) forest with a broadleaf component that was exposed to atmospheric [CO2] enrichment (ECO2; +200 ppm) for over 17 years and fertilization for 6 years, monitored with hundreds of environmental and sap flux sensors on a half‐hourly basis. We found that ECO2 did not create significant differences in stand evapotranspiration (ET) or water yield under either native or enhanced soil fertility, despite a 20% and 13% increase in leaf area index, respectively. Given the global range of conifers similar to P. taeda, our results imply that recent observations of increased global streamflow cannot be attributed to decreases in ET across all ecosystems, demonstrating a great need for model‐data synthesis activities to incorporate our current understanding of terrestrial vegetation in global water cycle models.</description><subject>Annual precipitation</subject><subject>Atmospheric models</subject><subject>Biological fertilization</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Conifers</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Environmental monitoring</subject><subject>Evaporation</subject><subject>Evapotranspiration</subject><subject>Fertility</subject><subject>Fertilization</subject><subject>Forests</subject><subject>Hydrologic cycle</subject><subject>Hydrological cycle</subject><subject>Leaf area</subject><subject>Leaf area index</subject><subject>Pine trees</subject><subject>Pinus taeda</subject><subject>Pinus taeda - metabolism</subject><subject>Plant Leaves - physiology</subject><subject>Plant Transpiration</subject><subject>Precipitation</subject><subject>Runoff</subject><subject>Soil</subject><subject>Soil - chemistry</subject><subject>Soil fertility</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Surface runoff</subject><subject>Terrestrial ecosystems</subject><subject>Transpiration</subject><subject>Water - metabolism</subject><subject>Water balance</subject><subject>Water yield</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1TAQhSMEoqWw4AWQBRtYpPXfteNluSoFqVI3sELIcuxJr6vEDrbT6u54BN6BN-NJcElhgYQ3Z0b-fEae0zTPCT4m9Zxc2f6YcCbYg-aQMLFpKe_Ew7t6w1uCCTtonuR8jTFmFIvHzQFViitK8WHz4-zGzLEkE_Lskyk-BmSCQ7emQEJ7D6NDcUAGzT7Az2_f-xSNG8EMaIgJckEmAQqx6lgfgEP9Ho0xXFW09hMyZYp53kHyFn3eXtIvCEKtdxOEgpbg6pBQp94Aiqle7Uyw1SRHP6IBUvGjL_unzaPBjBme3etR8-nd2cft-_bi8vzD9vSitZxsWMuEtMqBw6pjTHADylZx2HJlLacge7lRjlkFxgpqlJR9hyWHwRAB2PTsqHm5-sZcvM7WF7A7G0MAWzThgkqpKvR6heYUvy51A3ry2cI4mgBxybouGHdS0I5X9NU_6HVcUqhf0JQQynHHZVepNytlU8w5waDn5CeT9ppgfRevrvHq3_FW9sW949JP4P6Sf_KswMkK3PoR9v930ufbt6vlLxIdsnw</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Ward, Eric J.</creator><creator>Oren, Ram</creator><creator>Seok Kim, Hyun</creator><creator>Kim, Dohyoung</creator><creator>Tor‐ngern, Pantana</creator><creator>Ewers, Brent E.</creator><creator>McCarthy, Heather R.</creator><creator>Oishi, Andrew Christopher</creator><creator>Pataki, Diane E.</creator><creator>Palmroth, Sari</creator><creator>Phillips, Nathan G.</creator><creator>Schäfer, Karina V. R.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6499-8370</orcidid><orcidid>https://orcid.org/0000-0001-5064-4080</orcidid><orcidid>https://orcid.org/0000-0002-5047-5464</orcidid><orcidid>https://orcid.org/0000000150644080</orcidid><orcidid>https://orcid.org/0000000250475464</orcidid><orcidid>https://orcid.org/0000000264998370</orcidid></search><sort><creationdate>201810</creationdate><title>Evapotranspiration and water yield of a pine‐broadleaf forest are not altered by long‐term atmospheric [CO2] enrichment under native or enhanced soil fertility</title><author>Ward, Eric J. ; Oren, Ram ; Seok Kim, Hyun ; Kim, Dohyoung ; Tor‐ngern, Pantana ; Ewers, Brent E. ; McCarthy, Heather R. ; Oishi, Andrew Christopher ; Pataki, Diane E. ; Palmroth, Sari ; Phillips, Nathan G. ; Schäfer, Karina V. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4153-367c9ded0983364ae9c364d0c49cc42e7b759d3c9eac62a977b8074efa16e0ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annual precipitation</topic><topic>Atmospheric models</topic><topic>Biological fertilization</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Conifers</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Environmental monitoring</topic><topic>Evaporation</topic><topic>Evapotranspiration</topic><topic>Fertility</topic><topic>Fertilization</topic><topic>Forests</topic><topic>Hydrologic cycle</topic><topic>Hydrological cycle</topic><topic>Leaf area</topic><topic>Leaf area index</topic><topic>Pine trees</topic><topic>Pinus taeda</topic><topic>Pinus taeda - metabolism</topic><topic>Plant Leaves - physiology</topic><topic>Plant Transpiration</topic><topic>Precipitation</topic><topic>Runoff</topic><topic>Soil</topic><topic>Soil - chemistry</topic><topic>Soil fertility</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Surface runoff</topic><topic>Terrestrial ecosystems</topic><topic>Transpiration</topic><topic>Water - metabolism</topic><topic>Water balance</topic><topic>Water yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ward, Eric J.</creatorcontrib><creatorcontrib>Oren, Ram</creatorcontrib><creatorcontrib>Seok Kim, Hyun</creatorcontrib><creatorcontrib>Kim, Dohyoung</creatorcontrib><creatorcontrib>Tor‐ngern, Pantana</creatorcontrib><creatorcontrib>Ewers, Brent E.</creatorcontrib><creatorcontrib>McCarthy, Heather R.</creatorcontrib><creatorcontrib>Oishi, Andrew Christopher</creatorcontrib><creatorcontrib>Pataki, Diane E.</creatorcontrib><creatorcontrib>Palmroth, Sari</creatorcontrib><creatorcontrib>Phillips, Nathan G.</creatorcontrib><creatorcontrib>Schäfer, Karina V. R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ward, Eric J.</au><au>Oren, Ram</au><au>Seok Kim, Hyun</au><au>Kim, Dohyoung</au><au>Tor‐ngern, Pantana</au><au>Ewers, Brent E.</au><au>McCarthy, Heather R.</au><au>Oishi, Andrew Christopher</au><au>Pataki, Diane E.</au><au>Palmroth, Sari</au><au>Phillips, Nathan G.</au><au>Schäfer, Karina V. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evapotranspiration and water yield of a pine‐broadleaf forest are not altered by long‐term atmospheric [CO2] enrichment under native or enhanced soil fertility</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2018-10</date><risdate>2018</risdate><volume>24</volume><issue>10</issue><spage>4841</spage><epage>4856</epage><pages>4841-4856</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases in surface runoff observed over the past century have been attributed to increasing atmospheric CO2 concentrations resulting in reduced ET by terrestrial ecosystems. Here, we evaluate the water balance of a Pinus taeda (L.) forest with a broadleaf component that was exposed to atmospheric [CO2] enrichment (ECO2; +200 ppm) for over 17 years and fertilization for 6 years, monitored with hundreds of environmental and sap flux sensors on a half‐hourly basis. These measurements were synthesized using a one‐dimensional Richard's equation model to evaluate treatment differences in transpiration (T), evaporation (E), ET, and WY. We found that ECO2 did not create significant differences in stand T, ET, or WY under either native or enhanced soil fertility, despite a 20% and 13% increase in leaf area index, respectively. While T, ET, and WY responded to fertilization, this response was weak (&lt;3% of mean annual precipitation). Likewise, while E responded to ECO2 in the first 7 years of the study, this effect was of negligible magnitude (&lt;1% mean annual precipitation). Given the global range of conifers similar to P. taeda, our results imply that recent observations of increased global streamflow cannot be attributed to decreases in ET across all ecosystems, demonstrating a great need for model–data synthesis activities to incorporate our current understanding of terrestrial vegetation in global water cycle models. Here we evaluate the water balance of a Pinus taeda (L.) forest with a broadleaf component that was exposed to atmospheric [CO2] enrichment (ECO2; +200 ppm) for over 17 years and fertilization for 6 years, monitored with hundreds of environmental and sap flux sensors on a half‐hourly basis. We found that ECO2 did not create significant differences in stand evapotranspiration (ET) or water yield under either native or enhanced soil fertility, despite a 20% and 13% increase in leaf area index, respectively. Given the global range of conifers similar to P. taeda, our results imply that recent observations of increased global streamflow cannot be attributed to decreases in ET across all ecosystems, demonstrating a great need for model‐data synthesis activities to incorporate our current understanding of terrestrial vegetation in global water cycle models.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>29949220</pmid><doi>10.1111/gcb.14363</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6499-8370</orcidid><orcidid>https://orcid.org/0000-0001-5064-4080</orcidid><orcidid>https://orcid.org/0000-0002-5047-5464</orcidid><orcidid>https://orcid.org/0000000150644080</orcidid><orcidid>https://orcid.org/0000000250475464</orcidid><orcidid>https://orcid.org/0000000264998370</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2018-10, Vol.24 (10), p.4841-4856
issn 1354-1013
1365-2486
language eng
recordid cdi_osti_scitechconnect_1462779
source MEDLINE; Wiley Online Library (Online service)
subjects Annual precipitation
Atmospheric models
Biological fertilization
Carbon dioxide
Carbon Dioxide - metabolism
Conifers
Ecosystem
Ecosystems
Environmental monitoring
Evaporation
Evapotranspiration
Fertility
Fertilization
Forests
Hydrologic cycle
Hydrological cycle
Leaf area
Leaf area index
Pine trees
Pinus taeda
Pinus taeda - metabolism
Plant Leaves - physiology
Plant Transpiration
Precipitation
Runoff
Soil
Soil - chemistry
Soil fertility
Stream discharge
Stream flow
Surface runoff
Terrestrial ecosystems
Transpiration
Water - metabolism
Water balance
Water yield
title Evapotranspiration and water yield of a pine‐broadleaf forest are not altered by long‐term atmospheric [CO2] enrichment under native or enhanced soil fertility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A44%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evapotranspiration%20and%20water%20yield%20of%20a%20pine%E2%80%90broadleaf%20forest%20are%20not%20altered%20by%20long%E2%80%90term%20atmospheric%20%5BCO2%5D%20enrichment%20under%20native%20or%20enhanced%20soil%20fertility&rft.jtitle=Global%20change%20biology&rft.au=Ward,%20Eric%20J.&rft.date=2018-10&rft.volume=24&rft.issue=10&rft.spage=4841&rft.epage=4856&rft.pages=4841-4856&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.14363&rft_dat=%3Cproquest_osti_%3E2112408478%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112408478&rft_id=info:pmid/29949220&rfr_iscdi=true