Amorphization and nanocrystallization of silicon under shock compression
High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially a...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2016-01, Vol.103 (C), p.519-533 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 533 |
---|---|
container_issue | C |
container_start_page | 519 |
container_title | Acta materialia |
container_volume | 103 |
creator | Zhao, S. Hahn, E.N. Kad, B. Remington, B.A. Wehrenberg, C.E. Bringa, E.M. Meyers, M.A. |
description | High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energy changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. The nucleation of amorphization is analyzed qualitatively by classical nucleation theory.
[Display omitted] |
doi_str_mv | 10.1016/j.actamat.2015.09.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1462265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645415006916</els_id><sourcerecordid>1786190345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-a3fe27eddafc9cd279a0c4533c60289e53bd703255eb9f1761d1d69535a893973</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYsoOKcfQSg--dKaP03aPMkY6oSBL_ocsuSWZbbNTDJhfnpTOp99uofL71zOPVl2i1GJEeYPu1LpqHoVS4IwK5EoESFn2Qw3NS1Ixeh50pSJglesusyuQtghhEldoVm2WvTO77f2R0XrhlwNJh_U4LQ_hqi67m_v2jzYzuokD4MBn4et05-5dv3eQwgJuc4uWtUFuDnNefbx_PS-XBXrt5fX5WJd6KohsVC0BVKDMarVQhtSC4V0ikg1R6QRwOjG1IgSxmAjWlxzbLDhglGmGkFFTefZ3XTXhWhl0DaC3qZcA-goccUJ4SxB9xO09-7rACHK3gYNXacGcIcgcd1wLBCtRpRNqPYuBA-t3HvbK3-UGMmxXrmTp3rlWK9EQqZ6k-9x8kF69tuCH7PAoMFYP0Yxzv5z4RfdM4aZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786190345</pqid></control><display><type>article</type><title>Amorphization and nanocrystallization of silicon under shock compression</title><source>Elsevier ScienceDirect Journals</source><creator>Zhao, S. ; Hahn, E.N. ; Kad, B. ; Remington, B.A. ; Wehrenberg, C.E. ; Bringa, E.M. ; Meyers, M.A.</creator><creatorcontrib>Zhao, S. ; Hahn, E.N. ; Kad, B. ; Remington, B.A. ; Wehrenberg, C.E. ; Bringa, E.M. ; Meyers, M.A. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Univ. of California, San Diego, La Jolla, CA (United States) ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States) ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energy changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. The nucleation of amorphization is analyzed qualitatively by classical nucleation theory.
[Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2015.09.022</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Amorphization ; Compressing ; Dislocations ; Laser shock compression ; Molecular dynamics ; Nano-twinning ; Nanocrystalline ; Nanocrystals ; Nanostructure ; Nucleation ; Silicon</subject><ispartof>Acta materialia, 2016-01, Vol.103 (C), p.519-533</ispartof><rights>2015 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-a3fe27eddafc9cd279a0c4533c60289e53bd703255eb9f1761d1d69535a893973</citedby><cites>FETCH-LOGICAL-c482t-a3fe27eddafc9cd279a0c4533c60289e53bd703255eb9f1761d1d69535a893973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645415006916$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1462265$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, S.</creatorcontrib><creatorcontrib>Hahn, E.N.</creatorcontrib><creatorcontrib>Kad, B.</creatorcontrib><creatorcontrib>Remington, B.A.</creatorcontrib><creatorcontrib>Wehrenberg, C.E.</creatorcontrib><creatorcontrib>Bringa, E.M.</creatorcontrib><creatorcontrib>Meyers, M.A.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Univ. of California, San Diego, La Jolla, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Amorphization and nanocrystallization of silicon under shock compression</title><title>Acta materialia</title><description>High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energy changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. The nucleation of amorphization is analyzed qualitatively by classical nucleation theory.
[Display omitted]</description><subject>Amorphization</subject><subject>Compressing</subject><subject>Dislocations</subject><subject>Laser shock compression</subject><subject>Molecular dynamics</subject><subject>Nano-twinning</subject><subject>Nanocrystalline</subject><subject>Nanocrystals</subject><subject>Nanostructure</subject><subject>Nucleation</subject><subject>Silicon</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkF9LwzAUxYsoOKcfQSg--dKaP03aPMkY6oSBL_ocsuSWZbbNTDJhfnpTOp99uofL71zOPVl2i1GJEeYPu1LpqHoVS4IwK5EoESFn2Qw3NS1Ixeh50pSJglesusyuQtghhEldoVm2WvTO77f2R0XrhlwNJh_U4LQ_hqi67m_v2jzYzuokD4MBn4et05-5dv3eQwgJuc4uWtUFuDnNefbx_PS-XBXrt5fX5WJd6KohsVC0BVKDMarVQhtSC4V0ikg1R6QRwOjG1IgSxmAjWlxzbLDhglGmGkFFTefZ3XTXhWhl0DaC3qZcA-goccUJ4SxB9xO09-7rACHK3gYNXacGcIcgcd1wLBCtRpRNqPYuBA-t3HvbK3-UGMmxXrmTp3rlWK9EQqZ6k-9x8kF69tuCH7PAoMFYP0Yxzv5z4RfdM4aZ</recordid><startdate>20160115</startdate><enddate>20160115</enddate><creator>Zhao, S.</creator><creator>Hahn, E.N.</creator><creator>Kad, B.</creator><creator>Remington, B.A.</creator><creator>Wehrenberg, C.E.</creator><creator>Bringa, E.M.</creator><creator>Meyers, M.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160115</creationdate><title>Amorphization and nanocrystallization of silicon under shock compression</title><author>Zhao, S. ; Hahn, E.N. ; Kad, B. ; Remington, B.A. ; Wehrenberg, C.E. ; Bringa, E.M. ; Meyers, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-a3fe27eddafc9cd279a0c4533c60289e53bd703255eb9f1761d1d69535a893973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amorphization</topic><topic>Compressing</topic><topic>Dislocations</topic><topic>Laser shock compression</topic><topic>Molecular dynamics</topic><topic>Nano-twinning</topic><topic>Nanocrystalline</topic><topic>Nanocrystals</topic><topic>Nanostructure</topic><topic>Nucleation</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, S.</creatorcontrib><creatorcontrib>Hahn, E.N.</creatorcontrib><creatorcontrib>Kad, B.</creatorcontrib><creatorcontrib>Remington, B.A.</creatorcontrib><creatorcontrib>Wehrenberg, C.E.</creatorcontrib><creatorcontrib>Bringa, E.M.</creatorcontrib><creatorcontrib>Meyers, M.A.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Univ. of California, San Diego, La Jolla, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, S.</au><au>Hahn, E.N.</au><au>Kad, B.</au><au>Remington, B.A.</au><au>Wehrenberg, C.E.</au><au>Bringa, E.M.</au><au>Meyers, M.A.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Univ. of California, San Diego, La Jolla, CA (United States)</aucorp><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amorphization and nanocrystallization of silicon under shock compression</atitle><jtitle>Acta materialia</jtitle><date>2016-01-15</date><risdate>2016</risdate><volume>103</volume><issue>C</issue><spage>519</spage><epage>533</epage><pages>519-533</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energy changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. The nucleation of amorphization is analyzed qualitatively by classical nucleation theory.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2015.09.022</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2016-01, Vol.103 (C), p.519-533 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_osti_scitechconnect_1462265 |
source | Elsevier ScienceDirect Journals |
subjects | Amorphization Compressing Dislocations Laser shock compression Molecular dynamics Nano-twinning Nanocrystalline Nanocrystals Nanostructure Nucleation Silicon |
title | Amorphization and nanocrystallization of silicon under shock compression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amorphization%20and%20nanocrystallization%20of%20silicon%20under%20shock%20compression&rft.jtitle=Acta%20materialia&rft.au=Zhao,%20S.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2016-01-15&rft.volume=103&rft.issue=C&rft.spage=519&rft.epage=533&rft.pages=519-533&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2015.09.022&rft_dat=%3Cproquest_osti_%3E1786190345%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786190345&rft_id=info:pmid/&rft_els_id=S1359645415006916&rfr_iscdi=true |