Comprehensive Experimental and Computational Spectroscopic Study of Hexacyanoferrate Complexes in Water: From Infrared to X‑ray Wavelengths

We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2018-05, Vol.122 (19), p.5075-5086
Hauptverfasser: Ross, Matthew, Andersen, Amity, Fox, Zachary W, Zhang, Yu, Hong, Kiryong, Lee, Jae-Hyuk, Cordones, Amy, March, Anne Marie, Doumy, Gilles, Southworth, Stephen H, Marcus, Matthew A, Schoenlein, Robert W, Mukamel, Shaul, Govind, Niranjan, Khalil, Munira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5086
container_issue 19
container_start_page 5075
container_title The journal of physical chemistry. B
container_volume 122
creator Ross, Matthew
Andersen, Amity
Fox, Zachary W
Zhang, Yu
Hong, Kiryong
Lee, Jae-Hyuk
Cordones, Amy
March, Anne Marie
Doumy, Gilles
Southworth, Stephen H
Marcus, Matthew A
Schoenlein, Robert W
Mukamel, Shaul
Govind, Niranjan
Khalil, Munira
description We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute–solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute–solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute–solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute–solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe­(II) and Fe­(III) complexes in solution.
doi_str_mv 10.1021/acs.jpcb.7b12532
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1461346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2021732089</sourcerecordid><originalsourceid>FETCH-LOGICAL-a471t-797fda0385b5f94f4475c127c37a5928dbc492b7cfa4bcae08ceca5dbe357e083</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi1ERUvhzglZnDiwi-3EccKtWrW0UiUOBbU3y5mM2VSJHWyn2r3xAhx4RZ6k3u7CjYNlz8z_j-T_I-QNZ0vOBP9oIC7vJ2iXquVCFuIZOeFSsEU-6vnhXXFWHZOXMd4zJqSoqxfkWDQVL1RTn5BfKz9OAdfoYv-A9HwzYehHdMkM1LiO7sZzMqn3LnduJoQUfAQ_9UBv0txtqbf0EjcGtsZ5iyGYhE-uATcYae_obe6ET_Qi-JFeORtMwI4mT-_-_PwdzDbPH3BA9z2t4ytyZM0Q8fXhPiXfLs6_ri4X118-X63OrhemVDwtVKNsZ1hRy1baprRlqSRwoaBQRjai7looG9EqsKZswSCrAcHIrsVCqlwVp-Tdfq-PqdcR-oSwBu9c_p7mZQ6nrLLo_V40Bf9jxpj02EfAYTAO_Ry1yARUIVjdZCnbSyGHEwNaPeUUTdhqzvSOlM6k9I6UPpDKlreH7XM7YvfP8BdNFnzYC56sfg4ZQPz_vkd5CqOW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021732089</pqid></control><display><type>article</type><title>Comprehensive Experimental and Computational Spectroscopic Study of Hexacyanoferrate Complexes in Water: From Infrared to X‑ray Wavelengths</title><source>ACS Publications</source><creator>Ross, Matthew ; Andersen, Amity ; Fox, Zachary W ; Zhang, Yu ; Hong, Kiryong ; Lee, Jae-Hyuk ; Cordones, Amy ; March, Anne Marie ; Doumy, Gilles ; Southworth, Stephen H ; Marcus, Matthew A ; Schoenlein, Robert W ; Mukamel, Shaul ; Govind, Niranjan ; Khalil, Munira</creator><creatorcontrib>Ross, Matthew ; Andersen, Amity ; Fox, Zachary W ; Zhang, Yu ; Hong, Kiryong ; Lee, Jae-Hyuk ; Cordones, Amy ; March, Anne Marie ; Doumy, Gilles ; Southworth, Stephen H ; Marcus, Matthew A ; Schoenlein, Robert W ; Mukamel, Shaul ; Govind, Niranjan ; Khalil, Munira ; Argonne National Laboratory (ANL), Argonne, IL (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute–solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute–solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute–solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute–solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe­(II) and Fe­(III) complexes in solution.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.7b12532</identifier><identifier>PMID: 29613798</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>The journal of physical chemistry. B, 2018-05, Vol.122 (19), p.5075-5086</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a471t-797fda0385b5f94f4475c127c37a5928dbc492b7cfa4bcae08ceca5dbe357e083</citedby><cites>FETCH-LOGICAL-a471t-797fda0385b5f94f4475c127c37a5928dbc492b7cfa4bcae08ceca5dbe357e083</cites><orcidid>0000-0002-6508-4124 ; 0000-0002-6015-3135 ; 0000-0003-3625-366X ; 0000-0002-0434-544X ; 0000000260153135 ; 0000000265084124 ; 000000020434544X ; 000000033625366X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.7b12532$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.7b12532$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29613798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1461346$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ross, Matthew</creatorcontrib><creatorcontrib>Andersen, Amity</creatorcontrib><creatorcontrib>Fox, Zachary W</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Hong, Kiryong</creatorcontrib><creatorcontrib>Lee, Jae-Hyuk</creatorcontrib><creatorcontrib>Cordones, Amy</creatorcontrib><creatorcontrib>March, Anne Marie</creatorcontrib><creatorcontrib>Doumy, Gilles</creatorcontrib><creatorcontrib>Southworth, Stephen H</creatorcontrib><creatorcontrib>Marcus, Matthew A</creatorcontrib><creatorcontrib>Schoenlein, Robert W</creatorcontrib><creatorcontrib>Mukamel, Shaul</creatorcontrib><creatorcontrib>Govind, Niranjan</creatorcontrib><creatorcontrib>Khalil, Munira</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Comprehensive Experimental and Computational Spectroscopic Study of Hexacyanoferrate Complexes in Water: From Infrared to X‑ray Wavelengths</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute–solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute–solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute–solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute–solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe­(II) and Fe­(III) complexes in solution.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kcFu1DAQhi1ERUvhzglZnDiwi-3EccKtWrW0UiUOBbU3y5mM2VSJHWyn2r3xAhx4RZ6k3u7CjYNlz8z_j-T_I-QNZ0vOBP9oIC7vJ2iXquVCFuIZOeFSsEU-6vnhXXFWHZOXMd4zJqSoqxfkWDQVL1RTn5BfKz9OAdfoYv-A9HwzYehHdMkM1LiO7sZzMqn3LnduJoQUfAQ_9UBv0txtqbf0EjcGtsZ5iyGYhE-uATcYae_obe6ET_Qi-JFeORtMwI4mT-_-_PwdzDbPH3BA9z2t4ytyZM0Q8fXhPiXfLs6_ri4X118-X63OrhemVDwtVKNsZ1hRy1baprRlqSRwoaBQRjai7looG9EqsKZswSCrAcHIrsVCqlwVp-Tdfq-PqdcR-oSwBu9c_p7mZQ6nrLLo_V40Bf9jxpj02EfAYTAO_Ry1yARUIVjdZCnbSyGHEwNaPeUUTdhqzvSOlM6k9I6UPpDKlreH7XM7YvfP8BdNFnzYC56sfg4ZQPz_vkd5CqOW</recordid><startdate>20180517</startdate><enddate>20180517</enddate><creator>Ross, Matthew</creator><creator>Andersen, Amity</creator><creator>Fox, Zachary W</creator><creator>Zhang, Yu</creator><creator>Hong, Kiryong</creator><creator>Lee, Jae-Hyuk</creator><creator>Cordones, Amy</creator><creator>March, Anne Marie</creator><creator>Doumy, Gilles</creator><creator>Southworth, Stephen H</creator><creator>Marcus, Matthew A</creator><creator>Schoenlein, Robert W</creator><creator>Mukamel, Shaul</creator><creator>Govind, Niranjan</creator><creator>Khalil, Munira</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6508-4124</orcidid><orcidid>https://orcid.org/0000-0002-6015-3135</orcidid><orcidid>https://orcid.org/0000-0003-3625-366X</orcidid><orcidid>https://orcid.org/0000-0002-0434-544X</orcidid><orcidid>https://orcid.org/0000000260153135</orcidid><orcidid>https://orcid.org/0000000265084124</orcidid><orcidid>https://orcid.org/000000020434544X</orcidid><orcidid>https://orcid.org/000000033625366X</orcidid></search><sort><creationdate>20180517</creationdate><title>Comprehensive Experimental and Computational Spectroscopic Study of Hexacyanoferrate Complexes in Water: From Infrared to X‑ray Wavelengths</title><author>Ross, Matthew ; Andersen, Amity ; Fox, Zachary W ; Zhang, Yu ; Hong, Kiryong ; Lee, Jae-Hyuk ; Cordones, Amy ; March, Anne Marie ; Doumy, Gilles ; Southworth, Stephen H ; Marcus, Matthew A ; Schoenlein, Robert W ; Mukamel, Shaul ; Govind, Niranjan ; Khalil, Munira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a471t-797fda0385b5f94f4475c127c37a5928dbc492b7cfa4bcae08ceca5dbe357e083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ross, Matthew</creatorcontrib><creatorcontrib>Andersen, Amity</creatorcontrib><creatorcontrib>Fox, Zachary W</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Hong, Kiryong</creatorcontrib><creatorcontrib>Lee, Jae-Hyuk</creatorcontrib><creatorcontrib>Cordones, Amy</creatorcontrib><creatorcontrib>March, Anne Marie</creatorcontrib><creatorcontrib>Doumy, Gilles</creatorcontrib><creatorcontrib>Southworth, Stephen H</creatorcontrib><creatorcontrib>Marcus, Matthew A</creatorcontrib><creatorcontrib>Schoenlein, Robert W</creatorcontrib><creatorcontrib>Mukamel, Shaul</creatorcontrib><creatorcontrib>Govind, Niranjan</creatorcontrib><creatorcontrib>Khalil, Munira</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ross, Matthew</au><au>Andersen, Amity</au><au>Fox, Zachary W</au><au>Zhang, Yu</au><au>Hong, Kiryong</au><au>Lee, Jae-Hyuk</au><au>Cordones, Amy</au><au>March, Anne Marie</au><au>Doumy, Gilles</au><au>Southworth, Stephen H</au><au>Marcus, Matthew A</au><au>Schoenlein, Robert W</au><au>Mukamel, Shaul</au><au>Govind, Niranjan</au><au>Khalil, Munira</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Experimental and Computational Spectroscopic Study of Hexacyanoferrate Complexes in Water: From Infrared to X‑ray Wavelengths</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2018-05-17</date><risdate>2018</risdate><volume>122</volume><issue>19</issue><spage>5075</spage><epage>5086</epage><pages>5075-5086</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute–solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute–solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute–solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute–solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe­(II) and Fe­(III) complexes in solution.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29613798</pmid><doi>10.1021/acs.jpcb.7b12532</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6508-4124</orcidid><orcidid>https://orcid.org/0000-0002-6015-3135</orcidid><orcidid>https://orcid.org/0000-0003-3625-366X</orcidid><orcidid>https://orcid.org/0000-0002-0434-544X</orcidid><orcidid>https://orcid.org/0000000260153135</orcidid><orcidid>https://orcid.org/0000000265084124</orcidid><orcidid>https://orcid.org/000000020434544X</orcidid><orcidid>https://orcid.org/000000033625366X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2018-05, Vol.122 (19), p.5075-5086
issn 1520-6106
1520-5207
language eng
recordid cdi_osti_scitechconnect_1461346
source ACS Publications
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
title Comprehensive Experimental and Computational Spectroscopic Study of Hexacyanoferrate Complexes in Water: From Infrared to X‑ray Wavelengths
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Experimental%20and%20Computational%20Spectroscopic%20Study%20of%20Hexacyanoferrate%20Complexes%20in%20Water:%20From%20Infrared%20to%20X%E2%80%91ray%20Wavelengths&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Ross,%20Matthew&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2018-05-17&rft.volume=122&rft.issue=19&rft.spage=5075&rft.epage=5086&rft.pages=5075-5086&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.7b12532&rft_dat=%3Cproquest_osti_%3E2021732089%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2021732089&rft_id=info:pmid/29613798&rfr_iscdi=true