Automatic signal decoding and sensor stability of a 3-electrode mixed-potential sensor for NOx/NH3 quantification

Sensors to detect mixtures of NOx/NH3 are needed to monitor emissions of diesel automobiles where a selective catalytic reduction system uses an NH3 mediated reaction to reduce NOx. We report on the application of a three electrode La0.8Sr0.2CrO3, Au0.5Pd0.5, Pt mixed potential sensor using yttria-s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2018-09, Vol.283 (C), p.141-148
Hauptverfasser: Tsui, Lok-kun, Benavidez, Angelica, Palanisamy, Ponnusamy, Evans, Lindsey, Garzon, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue C
container_start_page 141
container_title Electrochimica acta
container_volume 283
creator Tsui, Lok-kun
Benavidez, Angelica
Palanisamy, Ponnusamy
Evans, Lindsey
Garzon, Fernando
description Sensors to detect mixtures of NOx/NH3 are needed to monitor emissions of diesel automobiles where a selective catalytic reduction system uses an NH3 mediated reaction to reduce NOx. We report on the application of a three electrode La0.8Sr0.2CrO3, Au0.5Pd0.5, Pt mixed potential sensor using yttria-stabilized-zirconia (YSZ) as a solid electrolyte to NOx/NH3 sensing. Artificial neural networks were used to automatically decode the concentrations of NOx/NH3 and errors of less than 15% are achieved. The optimal architecture for ANN decoding and the maximum density of training data points are also determined. The stability of the sensor was monitored by electrochemical impedance spectroscopy. The impedance associated with YSZ oxygen ion conduction and the electrochemical reactions at the three-phase interface are tracked over a period of over 100 days. [Display omitted] •Mixed potential electrochemical sensor was used to detect NO, NOx, and NH3 gases.•Artificial neural networks were trained to quantify concentrations of NOx and NH3.•The endurance of the device was evaluated using impedance spectroscopy.
doi_str_mv 10.1016/j.electacta.2018.06.133
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1459908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001346861831421X</els_id><sourcerecordid>S001346861831421X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-30892c3458afbcd4353d45ca4ec9a9fd6b8e43e2581cca7b11a6b7ade0ffda993</originalsourceid><addsrcrecordid>eNqFUEtPAjEQbowmIvobbLzv0m730T0SomJC4KLnpttOsQRa2BYD_96uGK8mM5nDfI-ZD6FHSnJKaD3Z5LAFFWWqvCCU56TOKWNXaER5wzLGq_YajQihLCtrXt-iuxA2hJCmbsgIHabH6HcyWoWDXTu5xRqU19atsXQaB3DB9zhE2dmtjWfsDZaYZT-WvdeAd_YEOtv7CC7aRP9lmNTL1WmynDN8OMq0M1YlG-_u0Y2R2wAPv3OMPl6e32fzbLF6fZtNF5kqCx4zRnhbKFZWXJpO6ZJVTJeVkiWoVrZG1x2HkkFRcaqUbDpKZd01UgMxRsu2ZWP0dNH1IVoRlI2gPpV3Ll0uaFm1LeEJ1FxAqvch9GDEvrc72Z8FJWKIV2zEX7xiiFeQWqR4E3N6YUL64ctCP1iAU6BtPzhob__V-AaWqIpY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automatic signal decoding and sensor stability of a 3-electrode mixed-potential sensor for NOx/NH3 quantification</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Tsui, Lok-kun ; Benavidez, Angelica ; Palanisamy, Ponnusamy ; Evans, Lindsey ; Garzon, Fernando</creator><creatorcontrib>Tsui, Lok-kun ; Benavidez, Angelica ; Palanisamy, Ponnusamy ; Evans, Lindsey ; Garzon, Fernando ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Sensors to detect mixtures of NOx/NH3 are needed to monitor emissions of diesel automobiles where a selective catalytic reduction system uses an NH3 mediated reaction to reduce NOx. We report on the application of a three electrode La0.8Sr0.2CrO3, Au0.5Pd0.5, Pt mixed potential sensor using yttria-stabilized-zirconia (YSZ) as a solid electrolyte to NOx/NH3 sensing. Artificial neural networks were used to automatically decode the concentrations of NOx/NH3 and errors of less than 15% are achieved. The optimal architecture for ANN decoding and the maximum density of training data points are also determined. The stability of the sensor was monitored by electrochemical impedance spectroscopy. The impedance associated with YSZ oxygen ion conduction and the electrochemical reactions at the three-phase interface are tracked over a period of over 100 days. [Display omitted] •Mixed potential electrochemical sensor was used to detect NO, NOx, and NH3 gases.•Artificial neural networks were trained to quantify concentrations of NOx and NH3.•The endurance of the device was evaluated using impedance spectroscopy.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2018.06.133</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Artificial neural network ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Mixed potential sensor ; NH3 ; NOx</subject><ispartof>Electrochimica acta, 2018-09, Vol.283 (C), p.141-148</ispartof><rights>2018 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-30892c3458afbcd4353d45ca4ec9a9fd6b8e43e2581cca7b11a6b7ade0ffda993</citedby><cites>FETCH-LOGICAL-c428t-30892c3458afbcd4353d45ca4ec9a9fd6b8e43e2581cca7b11a6b7ade0ffda993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S001346861831421X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1459908$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsui, Lok-kun</creatorcontrib><creatorcontrib>Benavidez, Angelica</creatorcontrib><creatorcontrib>Palanisamy, Ponnusamy</creatorcontrib><creatorcontrib>Evans, Lindsey</creatorcontrib><creatorcontrib>Garzon, Fernando</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Automatic signal decoding and sensor stability of a 3-electrode mixed-potential sensor for NOx/NH3 quantification</title><title>Electrochimica acta</title><description>Sensors to detect mixtures of NOx/NH3 are needed to monitor emissions of diesel automobiles where a selective catalytic reduction system uses an NH3 mediated reaction to reduce NOx. We report on the application of a three electrode La0.8Sr0.2CrO3, Au0.5Pd0.5, Pt mixed potential sensor using yttria-stabilized-zirconia (YSZ) as a solid electrolyte to NOx/NH3 sensing. Artificial neural networks were used to automatically decode the concentrations of NOx/NH3 and errors of less than 15% are achieved. The optimal architecture for ANN decoding and the maximum density of training data points are also determined. The stability of the sensor was monitored by electrochemical impedance spectroscopy. The impedance associated with YSZ oxygen ion conduction and the electrochemical reactions at the three-phase interface are tracked over a period of over 100 days. [Display omitted] •Mixed potential electrochemical sensor was used to detect NO, NOx, and NH3 gases.•Artificial neural networks were trained to quantify concentrations of NOx and NH3.•The endurance of the device was evaluated using impedance spectroscopy.</description><subject>Artificial neural network</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Mixed potential sensor</subject><subject>NH3</subject><subject>NOx</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUEtPAjEQbowmIvobbLzv0m730T0SomJC4KLnpttOsQRa2BYD_96uGK8mM5nDfI-ZD6FHSnJKaD3Z5LAFFWWqvCCU56TOKWNXaER5wzLGq_YajQihLCtrXt-iuxA2hJCmbsgIHabH6HcyWoWDXTu5xRqU19atsXQaB3DB9zhE2dmtjWfsDZaYZT-WvdeAd_YEOtv7CC7aRP9lmNTL1WmynDN8OMq0M1YlG-_u0Y2R2wAPv3OMPl6e32fzbLF6fZtNF5kqCx4zRnhbKFZWXJpO6ZJVTJeVkiWoVrZG1x2HkkFRcaqUbDpKZd01UgMxRsu2ZWP0dNH1IVoRlI2gPpV3Ll0uaFm1LeEJ1FxAqvch9GDEvrc72Z8FJWKIV2zEX7xiiFeQWqR4E3N6YUL64ctCP1iAU6BtPzhob__V-AaWqIpY</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Tsui, Lok-kun</creator><creator>Benavidez, Angelica</creator><creator>Palanisamy, Ponnusamy</creator><creator>Evans, Lindsey</creator><creator>Garzon, Fernando</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180901</creationdate><title>Automatic signal decoding and sensor stability of a 3-electrode mixed-potential sensor for NOx/NH3 quantification</title><author>Tsui, Lok-kun ; Benavidez, Angelica ; Palanisamy, Ponnusamy ; Evans, Lindsey ; Garzon, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-30892c3458afbcd4353d45ca4ec9a9fd6b8e43e2581cca7b11a6b7ade0ffda993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural network</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Mixed potential sensor</topic><topic>NH3</topic><topic>NOx</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsui, Lok-kun</creatorcontrib><creatorcontrib>Benavidez, Angelica</creatorcontrib><creatorcontrib>Palanisamy, Ponnusamy</creatorcontrib><creatorcontrib>Evans, Lindsey</creatorcontrib><creatorcontrib>Garzon, Fernando</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsui, Lok-kun</au><au>Benavidez, Angelica</au><au>Palanisamy, Ponnusamy</au><au>Evans, Lindsey</au><au>Garzon, Fernando</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic signal decoding and sensor stability of a 3-electrode mixed-potential sensor for NOx/NH3 quantification</atitle><jtitle>Electrochimica acta</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>283</volume><issue>C</issue><spage>141</spage><epage>148</epage><pages>141-148</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Sensors to detect mixtures of NOx/NH3 are needed to monitor emissions of diesel automobiles where a selective catalytic reduction system uses an NH3 mediated reaction to reduce NOx. We report on the application of a three electrode La0.8Sr0.2CrO3, Au0.5Pd0.5, Pt mixed potential sensor using yttria-stabilized-zirconia (YSZ) as a solid electrolyte to NOx/NH3 sensing. Artificial neural networks were used to automatically decode the concentrations of NOx/NH3 and errors of less than 15% are achieved. The optimal architecture for ANN decoding and the maximum density of training data points are also determined. The stability of the sensor was monitored by electrochemical impedance spectroscopy. The impedance associated with YSZ oxygen ion conduction and the electrochemical reactions at the three-phase interface are tracked over a period of over 100 days. [Display omitted] •Mixed potential electrochemical sensor was used to detect NO, NOx, and NH3 gases.•Artificial neural networks were trained to quantify concentrations of NOx and NH3.•The endurance of the device was evaluated using impedance spectroscopy.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2018.06.133</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2018-09, Vol.283 (C), p.141-148
issn 0013-4686
1873-3859
language eng
recordid cdi_osti_scitechconnect_1459908
source Elsevier ScienceDirect Journals Complete
subjects Artificial neural network
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Mixed potential sensor
NH3
NOx
title Automatic signal decoding and sensor stability of a 3-electrode mixed-potential sensor for NOx/NH3 quantification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20signal%20decoding%20and%20sensor%20stability%20of%20a%203-electrode%20mixed-potential%20sensor%20for%20NOx/NH3%20quantification&rft.jtitle=Electrochimica%20acta&rft.au=Tsui,%20Lok-kun&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2018-09-01&rft.volume=283&rft.issue=C&rft.spage=141&rft.epage=148&rft.pages=141-148&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2018.06.133&rft_dat=%3Celsevier_osti_%3ES001346861831421X%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S001346861831421X&rfr_iscdi=true