Automatic signal decoding and sensor stability of a 3-electrode mixed-potential sensor for NOx/NH3 quantification
Sensors to detect mixtures of NOx/NH3 are needed to monitor emissions of diesel automobiles where a selective catalytic reduction system uses an NH3 mediated reaction to reduce NOx. We report on the application of a three electrode La0.8Sr0.2CrO3, Au0.5Pd0.5, Pt mixed potential sensor using yttria-s...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2018-09, Vol.283 (C), p.141-148 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148 |
---|---|
container_issue | C |
container_start_page | 141 |
container_title | Electrochimica acta |
container_volume | 283 |
creator | Tsui, Lok-kun Benavidez, Angelica Palanisamy, Ponnusamy Evans, Lindsey Garzon, Fernando |
description | Sensors to detect mixtures of NOx/NH3 are needed to monitor emissions of diesel automobiles where a selective catalytic reduction system uses an NH3 mediated reaction to reduce NOx. We report on the application of a three electrode La0.8Sr0.2CrO3, Au0.5Pd0.5, Pt mixed potential sensor using yttria-stabilized-zirconia (YSZ) as a solid electrolyte to NOx/NH3 sensing. Artificial neural networks were used to automatically decode the concentrations of NOx/NH3 and errors of less than 15% are achieved. The optimal architecture for ANN decoding and the maximum density of training data points are also determined. The stability of the sensor was monitored by electrochemical impedance spectroscopy. The impedance associated with YSZ oxygen ion conduction and the electrochemical reactions at the three-phase interface are tracked over a period of over 100 days.
[Display omitted]
•Mixed potential electrochemical sensor was used to detect NO, NOx, and NH3 gases.•Artificial neural networks were trained to quantify concentrations of NOx and NH3.•The endurance of the device was evaluated using impedance spectroscopy. |
doi_str_mv | 10.1016/j.electacta.2018.06.133 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1459908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001346861831421X</els_id><sourcerecordid>S001346861831421X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-30892c3458afbcd4353d45ca4ec9a9fd6b8e43e2581cca7b11a6b7ade0ffda993</originalsourceid><addsrcrecordid>eNqFUEtPAjEQbowmIvobbLzv0m730T0SomJC4KLnpttOsQRa2BYD_96uGK8mM5nDfI-ZD6FHSnJKaD3Z5LAFFWWqvCCU56TOKWNXaER5wzLGq_YajQihLCtrXt-iuxA2hJCmbsgIHabH6HcyWoWDXTu5xRqU19atsXQaB3DB9zhE2dmtjWfsDZaYZT-WvdeAd_YEOtv7CC7aRP9lmNTL1WmynDN8OMq0M1YlG-_u0Y2R2wAPv3OMPl6e32fzbLF6fZtNF5kqCx4zRnhbKFZWXJpO6ZJVTJeVkiWoVrZG1x2HkkFRcaqUbDpKZd01UgMxRsu2ZWP0dNH1IVoRlI2gPpV3Ll0uaFm1LeEJ1FxAqvch9GDEvrc72Z8FJWKIV2zEX7xiiFeQWqR4E3N6YUL64ctCP1iAU6BtPzhob__V-AaWqIpY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automatic signal decoding and sensor stability of a 3-electrode mixed-potential sensor for NOx/NH3 quantification</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Tsui, Lok-kun ; Benavidez, Angelica ; Palanisamy, Ponnusamy ; Evans, Lindsey ; Garzon, Fernando</creator><creatorcontrib>Tsui, Lok-kun ; Benavidez, Angelica ; Palanisamy, Ponnusamy ; Evans, Lindsey ; Garzon, Fernando ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Sensors to detect mixtures of NOx/NH3 are needed to monitor emissions of diesel automobiles where a selective catalytic reduction system uses an NH3 mediated reaction to reduce NOx. We report on the application of a three electrode La0.8Sr0.2CrO3, Au0.5Pd0.5, Pt mixed potential sensor using yttria-stabilized-zirconia (YSZ) as a solid electrolyte to NOx/NH3 sensing. Artificial neural networks were used to automatically decode the concentrations of NOx/NH3 and errors of less than 15% are achieved. The optimal architecture for ANN decoding and the maximum density of training data points are also determined. The stability of the sensor was monitored by electrochemical impedance spectroscopy. The impedance associated with YSZ oxygen ion conduction and the electrochemical reactions at the three-phase interface are tracked over a period of over 100 days.
[Display omitted]
•Mixed potential electrochemical sensor was used to detect NO, NOx, and NH3 gases.•Artificial neural networks were trained to quantify concentrations of NOx and NH3.•The endurance of the device was evaluated using impedance spectroscopy.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2018.06.133</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Artificial neural network ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Mixed potential sensor ; NH3 ; NOx</subject><ispartof>Electrochimica acta, 2018-09, Vol.283 (C), p.141-148</ispartof><rights>2018 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-30892c3458afbcd4353d45ca4ec9a9fd6b8e43e2581cca7b11a6b7ade0ffda993</citedby><cites>FETCH-LOGICAL-c428t-30892c3458afbcd4353d45ca4ec9a9fd6b8e43e2581cca7b11a6b7ade0ffda993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S001346861831421X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1459908$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsui, Lok-kun</creatorcontrib><creatorcontrib>Benavidez, Angelica</creatorcontrib><creatorcontrib>Palanisamy, Ponnusamy</creatorcontrib><creatorcontrib>Evans, Lindsey</creatorcontrib><creatorcontrib>Garzon, Fernando</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Automatic signal decoding and sensor stability of a 3-electrode mixed-potential sensor for NOx/NH3 quantification</title><title>Electrochimica acta</title><description>Sensors to detect mixtures of NOx/NH3 are needed to monitor emissions of diesel automobiles where a selective catalytic reduction system uses an NH3 mediated reaction to reduce NOx. We report on the application of a three electrode La0.8Sr0.2CrO3, Au0.5Pd0.5, Pt mixed potential sensor using yttria-stabilized-zirconia (YSZ) as a solid electrolyte to NOx/NH3 sensing. Artificial neural networks were used to automatically decode the concentrations of NOx/NH3 and errors of less than 15% are achieved. The optimal architecture for ANN decoding and the maximum density of training data points are also determined. The stability of the sensor was monitored by electrochemical impedance spectroscopy. The impedance associated with YSZ oxygen ion conduction and the electrochemical reactions at the three-phase interface are tracked over a period of over 100 days.
[Display omitted]
•Mixed potential electrochemical sensor was used to detect NO, NOx, and NH3 gases.•Artificial neural networks were trained to quantify concentrations of NOx and NH3.•The endurance of the device was evaluated using impedance spectroscopy.</description><subject>Artificial neural network</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Mixed potential sensor</subject><subject>NH3</subject><subject>NOx</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUEtPAjEQbowmIvobbLzv0m730T0SomJC4KLnpttOsQRa2BYD_96uGK8mM5nDfI-ZD6FHSnJKaD3Z5LAFFWWqvCCU56TOKWNXaER5wzLGq_YajQihLCtrXt-iuxA2hJCmbsgIHabH6HcyWoWDXTu5xRqU19atsXQaB3DB9zhE2dmtjWfsDZaYZT-WvdeAd_YEOtv7CC7aRP9lmNTL1WmynDN8OMq0M1YlG-_u0Y2R2wAPv3OMPl6e32fzbLF6fZtNF5kqCx4zRnhbKFZWXJpO6ZJVTJeVkiWoVrZG1x2HkkFRcaqUbDpKZd01UgMxRsu2ZWP0dNH1IVoRlI2gPpV3Ll0uaFm1LeEJ1FxAqvch9GDEvrc72Z8FJWKIV2zEX7xiiFeQWqR4E3N6YUL64ctCP1iAU6BtPzhob__V-AaWqIpY</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Tsui, Lok-kun</creator><creator>Benavidez, Angelica</creator><creator>Palanisamy, Ponnusamy</creator><creator>Evans, Lindsey</creator><creator>Garzon, Fernando</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180901</creationdate><title>Automatic signal decoding and sensor stability of a 3-electrode mixed-potential sensor for NOx/NH3 quantification</title><author>Tsui, Lok-kun ; Benavidez, Angelica ; Palanisamy, Ponnusamy ; Evans, Lindsey ; Garzon, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-30892c3458afbcd4353d45ca4ec9a9fd6b8e43e2581cca7b11a6b7ade0ffda993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural network</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Mixed potential sensor</topic><topic>NH3</topic><topic>NOx</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsui, Lok-kun</creatorcontrib><creatorcontrib>Benavidez, Angelica</creatorcontrib><creatorcontrib>Palanisamy, Ponnusamy</creatorcontrib><creatorcontrib>Evans, Lindsey</creatorcontrib><creatorcontrib>Garzon, Fernando</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsui, Lok-kun</au><au>Benavidez, Angelica</au><au>Palanisamy, Ponnusamy</au><au>Evans, Lindsey</au><au>Garzon, Fernando</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic signal decoding and sensor stability of a 3-electrode mixed-potential sensor for NOx/NH3 quantification</atitle><jtitle>Electrochimica acta</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>283</volume><issue>C</issue><spage>141</spage><epage>148</epage><pages>141-148</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Sensors to detect mixtures of NOx/NH3 are needed to monitor emissions of diesel automobiles where a selective catalytic reduction system uses an NH3 mediated reaction to reduce NOx. We report on the application of a three electrode La0.8Sr0.2CrO3, Au0.5Pd0.5, Pt mixed potential sensor using yttria-stabilized-zirconia (YSZ) as a solid electrolyte to NOx/NH3 sensing. Artificial neural networks were used to automatically decode the concentrations of NOx/NH3 and errors of less than 15% are achieved. The optimal architecture for ANN decoding and the maximum density of training data points are also determined. The stability of the sensor was monitored by electrochemical impedance spectroscopy. The impedance associated with YSZ oxygen ion conduction and the electrochemical reactions at the three-phase interface are tracked over a period of over 100 days.
[Display omitted]
•Mixed potential electrochemical sensor was used to detect NO, NOx, and NH3 gases.•Artificial neural networks were trained to quantify concentrations of NOx and NH3.•The endurance of the device was evaluated using impedance spectroscopy.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2018.06.133</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2018-09, Vol.283 (C), p.141-148 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_osti_scitechconnect_1459908 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Artificial neural network INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Mixed potential sensor NH3 NOx |
title | Automatic signal decoding and sensor stability of a 3-electrode mixed-potential sensor for NOx/NH3 quantification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20signal%20decoding%20and%20sensor%20stability%20of%20a%203-electrode%20mixed-potential%20sensor%20for%20NOx/NH3%20quantification&rft.jtitle=Electrochimica%20acta&rft.au=Tsui,%20Lok-kun&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2018-09-01&rft.volume=283&rft.issue=C&rft.spage=141&rft.epage=148&rft.pages=141-148&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2018.06.133&rft_dat=%3Celsevier_osti_%3ES001346861831421X%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S001346861831421X&rfr_iscdi=true |