Multi-objective optimization techniques to design the Pareto front of organic dielectric polymers
We present two Monte Carlo algorithms to find the Pareto front of the chemical space of a class of dielectric polymers that is most interesting with respect to optimizing both the bandgap and dielectric constant. Starting with a dataset generated from density functional theory calculations, we used...
Gespeichert in:
Veröffentlicht in: | Computational materials science 2016-12, Vol.125 (C), p.92-99 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 99 |
---|---|
container_issue | C |
container_start_page | 92 |
container_title | Computational materials science |
container_volume | 125 |
creator | Mannodi-Kanakkithodi, Arun Pilania, Ghanshyam Ramprasad, Rampi Lookman, Turab Gubernatis, James E. |
description | We present two Monte Carlo algorithms to find the Pareto front of the chemical space of a class of dielectric polymers that is most interesting with respect to optimizing both the bandgap and dielectric constant. Starting with a dataset generated from density functional theory calculations, we used machine learning to construct surrogate models for the bandgaps and dielectric constants of all physically meaningful 4-block polymers (that is, polymer systems with a 4-block repeat unit). We parameterized these machine learning models in such a way that the surrogates built for the 4-block polymers were readily extendable to polymers beyond a 4-block repeat unit. By using translational invariance, chemical intuition, and domain knowledge, we were able to enumerate all possible 4, 6, and 8 block polymers and benchmark our Monte Carlo sampling of the chemical space against the exact enumeration of the surrogate predictions. We obtained exact agreement for the fronts of 4-block polymers and at least a 90% agreement for those of 6 and 8-block polymers. We present fronts for 10-block polymer that are not possible to obtain by direct enumeration. We note that our Monte Carlo methods also return polymers close to the predicted front and a measure of the closeness. Both quantities are useful information for the design and discovery of new polymers. |
doi_str_mv | 10.1016/j.commatsci.2016.08.018 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1459808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025616303883</els_id><sourcerecordid>S0927025616303883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-5a3582298f72e72390c28e937376b4dcf198b641d6f9e1dab81c9eb9fa8ea3a83</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwDFjcE2ynSexjVfEnFcEBzpbjrFtHSVxst1J5ehwVceW0q9Hs7O6H0C0lOSW0uu9y7YZBxaBtzpKQE54Tys_QjPJaZIQTeo5mRLA6I6ysLtFVCB1JRsHZDKnXfR9t5poOdLQHwG4X7WC_VbRuxBH0drRfewg4OtxCsJskbgG_Kw9JMd6NETuDnd-o0WrcWuhTkE_tzvXHAXy4RhdG9QFufuscfT4-fKyes_Xb08tquc50IWjMSlWUnDHBTc2gZoUgmnEQRV3UVbNotaGCN9WCtpURQFvVcKoFNMIoDqpQvJiju1OuC9HKRGM6XrtxTPdIuigFJ5OpPpm0dyF4MHLn7aD8UVIiJ5yyk3845YRTEi4TzjS5PE1C-uFgwU8rYNTQWj9taJ39N-MH6eOE-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-objective optimization techniques to design the Pareto front of organic dielectric polymers</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mannodi-Kanakkithodi, Arun ; Pilania, Ghanshyam ; Ramprasad, Rampi ; Lookman, Turab ; Gubernatis, James E.</creator><creatorcontrib>Mannodi-Kanakkithodi, Arun ; Pilania, Ghanshyam ; Ramprasad, Rampi ; Lookman, Turab ; Gubernatis, James E. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>We present two Monte Carlo algorithms to find the Pareto front of the chemical space of a class of dielectric polymers that is most interesting with respect to optimizing both the bandgap and dielectric constant. Starting with a dataset generated from density functional theory calculations, we used machine learning to construct surrogate models for the bandgaps and dielectric constants of all physically meaningful 4-block polymers (that is, polymer systems with a 4-block repeat unit). We parameterized these machine learning models in such a way that the surrogates built for the 4-block polymers were readily extendable to polymers beyond a 4-block repeat unit. By using translational invariance, chemical intuition, and domain knowledge, we were able to enumerate all possible 4, 6, and 8 block polymers and benchmark our Monte Carlo sampling of the chemical space against the exact enumeration of the surrogate predictions. We obtained exact agreement for the fronts of 4-block polymers and at least a 90% agreement for those of 6 and 8-block polymers. We present fronts for 10-block polymer that are not possible to obtain by direct enumeration. We note that our Monte Carlo methods also return polymers close to the predicted front and a measure of the closeness. Both quantities are useful information for the design and discovery of new polymers.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2016.08.018</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Density functional theory ; Materials informatics ; MATERIALS SCIENCE ; MATHEMATICS AND COMPUTING ; Multi-objective optimization</subject><ispartof>Computational materials science, 2016-12, Vol.125 (C), p.92-99</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-5a3582298f72e72390c28e937376b4dcf198b641d6f9e1dab81c9eb9fa8ea3a83</citedby><cites>FETCH-LOGICAL-c391t-5a3582298f72e72390c28e937376b4dcf198b641d6f9e1dab81c9eb9fa8ea3a83</cites><orcidid>0000000181225671 ; 0000000277201877 ; 0000000344601572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.commatsci.2016.08.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1459808$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mannodi-Kanakkithodi, Arun</creatorcontrib><creatorcontrib>Pilania, Ghanshyam</creatorcontrib><creatorcontrib>Ramprasad, Rampi</creatorcontrib><creatorcontrib>Lookman, Turab</creatorcontrib><creatorcontrib>Gubernatis, James E.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Multi-objective optimization techniques to design the Pareto front of organic dielectric polymers</title><title>Computational materials science</title><description>We present two Monte Carlo algorithms to find the Pareto front of the chemical space of a class of dielectric polymers that is most interesting with respect to optimizing both the bandgap and dielectric constant. Starting with a dataset generated from density functional theory calculations, we used machine learning to construct surrogate models for the bandgaps and dielectric constants of all physically meaningful 4-block polymers (that is, polymer systems with a 4-block repeat unit). We parameterized these machine learning models in such a way that the surrogates built for the 4-block polymers were readily extendable to polymers beyond a 4-block repeat unit. By using translational invariance, chemical intuition, and domain knowledge, we were able to enumerate all possible 4, 6, and 8 block polymers and benchmark our Monte Carlo sampling of the chemical space against the exact enumeration of the surrogate predictions. We obtained exact agreement for the fronts of 4-block polymers and at least a 90% agreement for those of 6 and 8-block polymers. We present fronts for 10-block polymer that are not possible to obtain by direct enumeration. We note that our Monte Carlo methods also return polymers close to the predicted front and a measure of the closeness. Both quantities are useful information for the design and discovery of new polymers.</description><subject>Density functional theory</subject><subject>Materials informatics</subject><subject>MATERIALS SCIENCE</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Multi-objective optimization</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwDFjcE2ynSexjVfEnFcEBzpbjrFtHSVxst1J5ehwVceW0q9Hs7O6H0C0lOSW0uu9y7YZBxaBtzpKQE54Tys_QjPJaZIQTeo5mRLA6I6ysLtFVCB1JRsHZDKnXfR9t5poOdLQHwG4X7WC_VbRuxBH0drRfewg4OtxCsJskbgG_Kw9JMd6NETuDnd-o0WrcWuhTkE_tzvXHAXy4RhdG9QFufuscfT4-fKyes_Xb08tquc50IWjMSlWUnDHBTc2gZoUgmnEQRV3UVbNotaGCN9WCtpURQFvVcKoFNMIoDqpQvJiju1OuC9HKRGM6XrtxTPdIuigFJ5OpPpm0dyF4MHLn7aD8UVIiJ5yyk3845YRTEi4TzjS5PE1C-uFgwU8rYNTQWj9taJ39N-MH6eOE-A</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Mannodi-Kanakkithodi, Arun</creator><creator>Pilania, Ghanshyam</creator><creator>Ramprasad, Rampi</creator><creator>Lookman, Turab</creator><creator>Gubernatis, James E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000181225671</orcidid><orcidid>https://orcid.org/0000000277201877</orcidid><orcidid>https://orcid.org/0000000344601572</orcidid></search><sort><creationdate>20161201</creationdate><title>Multi-objective optimization techniques to design the Pareto front of organic dielectric polymers</title><author>Mannodi-Kanakkithodi, Arun ; Pilania, Ghanshyam ; Ramprasad, Rampi ; Lookman, Turab ; Gubernatis, James E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-5a3582298f72e72390c28e937376b4dcf198b641d6f9e1dab81c9eb9fa8ea3a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Density functional theory</topic><topic>Materials informatics</topic><topic>MATERIALS SCIENCE</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Multi-objective optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mannodi-Kanakkithodi, Arun</creatorcontrib><creatorcontrib>Pilania, Ghanshyam</creatorcontrib><creatorcontrib>Ramprasad, Rampi</creatorcontrib><creatorcontrib>Lookman, Turab</creatorcontrib><creatorcontrib>Gubernatis, James E.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mannodi-Kanakkithodi, Arun</au><au>Pilania, Ghanshyam</au><au>Ramprasad, Rampi</au><au>Lookman, Turab</au><au>Gubernatis, James E.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective optimization techniques to design the Pareto front of organic dielectric polymers</atitle><jtitle>Computational materials science</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>125</volume><issue>C</issue><spage>92</spage><epage>99</epage><pages>92-99</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>We present two Monte Carlo algorithms to find the Pareto front of the chemical space of a class of dielectric polymers that is most interesting with respect to optimizing both the bandgap and dielectric constant. Starting with a dataset generated from density functional theory calculations, we used machine learning to construct surrogate models for the bandgaps and dielectric constants of all physically meaningful 4-block polymers (that is, polymer systems with a 4-block repeat unit). We parameterized these machine learning models in such a way that the surrogates built for the 4-block polymers were readily extendable to polymers beyond a 4-block repeat unit. By using translational invariance, chemical intuition, and domain knowledge, we were able to enumerate all possible 4, 6, and 8 block polymers and benchmark our Monte Carlo sampling of the chemical space against the exact enumeration of the surrogate predictions. We obtained exact agreement for the fronts of 4-block polymers and at least a 90% agreement for those of 6 and 8-block polymers. We present fronts for 10-block polymer that are not possible to obtain by direct enumeration. We note that our Monte Carlo methods also return polymers close to the predicted front and a measure of the closeness. Both quantities are useful information for the design and discovery of new polymers.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2016.08.018</doi><tpages>8</tpages><orcidid>https://orcid.org/0000000181225671</orcidid><orcidid>https://orcid.org/0000000277201877</orcidid><orcidid>https://orcid.org/0000000344601572</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0256 |
ispartof | Computational materials science, 2016-12, Vol.125 (C), p.92-99 |
issn | 0927-0256 1879-0801 |
language | eng |
recordid | cdi_osti_scitechconnect_1459808 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Density functional theory Materials informatics MATERIALS SCIENCE MATHEMATICS AND COMPUTING Multi-objective optimization |
title | Multi-objective optimization techniques to design the Pareto front of organic dielectric polymers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20optimization%20techniques%20to%20design%20the%20Pareto%20front%20of%20organic%20dielectric%20polymers&rft.jtitle=Computational%20materials%20science&rft.au=Mannodi-Kanakkithodi,%20Arun&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2016-12-01&rft.volume=125&rft.issue=C&rft.spage=92&rft.epage=99&rft.pages=92-99&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2016.08.018&rft_dat=%3Celsevier_osti_%3ES0927025616303883%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0927025616303883&rfr_iscdi=true |