Bifunctional glycosyltransferases catalyze both extension and termination of pectic galactan oligosaccharides
Pectins are the most complex polysaccharides of the plant cell wall. Based on the number of methylations, acetylations and glycosidic linkages present in their structures, it is estimated that up to 67 transferase activities are involved in pectin biosynthesis. Pectic galactans constitute a major pa...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2018-03, Vol.94 (2) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 94 |
creator | Laursen, Tomas Stonebloom, Solomon H. Pidatala, Venkataramana R. Birdseye, Devon S. Clausen, Mads H. Mortimer, Jenny C. Scheller, Henrik Vibe |
description | Pectins are the most complex polysaccharides of the plant cell wall. Based on the number of methylations, acetylations and glycosidic linkages present in their structures, it is estimated that up to 67 transferase activities are involved in pectin biosynthesis. Pectic galactans constitute a major part of pectin in the form of side-chains of rhamnogalacturonan-I. In Arabidopsis, galactan synthase 1 (GALS1) catalyzes the addition of galactose units from UDP-Gal to growing β-1,4-galactan chains. However, the mechanisms for obtaining varying degrees of polymerization remain poorly understood. In this study, we show that AtGALS1 is bifunctional, catalyzing both the transfer of galactose from UDP-α-d-Gal and the transfer of an arabinopyranose from UDP-β-l-Arapto galactan chains. The two substrates share a similar structure, but UDP-α-d-Gal is the preferred substrate, with a 10-fold higher affinity. Transfer of Arapto galactan prevents further addition of galactose residues, resulting in a lower degree of polymerization. We show that this dual activity occurs both in vitro and in vivo. The herein described bifunctionality of AtGALS1 may suggest that plants can produce the incredible structural diversity of polysaccharides without a dedicated glycosyltransferase for each glycosidic linkage. |
doi_str_mv | 10.1111/tpj.13860 |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1459405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1459405</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_14594053</originalsourceid><addsrcrecordid>eNqNjE1OwzAQha0KpIafBTcYsU-xcZK2WxCIA7BgVw3TSeLKtavMVCKcHiNxAN7mSU_f-4y5c3blSh70dFg5v-nswlTOd23tnf-4MJXddrZeN-5xaa5EDta6te-ayhyfQn9OpCEnjDDEmbLMUSdM0vOEwgKEinH-ZvjMOgJ_KScpOGDag_J0DAl_75B7OHExEQwYkRTLFMOQBYlGnMKe5cZc9hiFb__62ty_vrw_v9VZNOyEgjKNlFMqnp1r2m1jW_8v6AfQfVE0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bifunctional glycosyltransferases catalyze both extension and termination of pectic galactan oligosaccharides</title><source>Wiley-Blackwell Journals</source><source>IngentaConnect</source><source>Wiley Online Library Free Content</source><source>EZB Electronic Journals Library</source><creator>Laursen, Tomas ; Stonebloom, Solomon H. ; Pidatala, Venkataramana R. ; Birdseye, Devon S. ; Clausen, Mads H. ; Mortimer, Jenny C. ; Scheller, Henrik Vibe</creator><creatorcontrib>Laursen, Tomas ; Stonebloom, Solomon H. ; Pidatala, Venkataramana R. ; Birdseye, Devon S. ; Clausen, Mads H. ; Mortimer, Jenny C. ; Scheller, Henrik Vibe ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Pectins are the most complex polysaccharides of the plant cell wall. Based on the number of methylations, acetylations and glycosidic linkages present in their structures, it is estimated that up to 67 transferase activities are involved in pectin biosynthesis. Pectic galactans constitute a major part of pectin in the form of side-chains of rhamnogalacturonan-I. In Arabidopsis, galactan synthase 1 (GALS1) catalyzes the addition of galactose units from UDP-Gal to growing β-1,4-galactan chains. However, the mechanisms for obtaining varying degrees of polymerization remain poorly understood. In this study, we show that AtGALS1 is bifunctional, catalyzing both the transfer of galactose from UDP-α-d-Gal and the transfer of an arabinopyranose from UDP-β-l-Arapto galactan chains. The two substrates share a similar structure, but UDP-α-d-Gal is the preferred substrate, with a 10-fold higher affinity. Transfer of Arapto galactan prevents further addition of galactose residues, resulting in a lower degree of polymerization. We show that this dual activity occurs both in vitro and in vivo. The herein described bifunctionality of AtGALS1 may suggest that plants can produce the incredible structural diversity of polysaccharides without a dedicated glycosyltransferase for each glycosidic linkage.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.13860</identifier><language>eng</language><publisher>United States: Society for Experimental Biology</publisher><subject>BASIC BIOLOGICAL SCIENCES</subject><ispartof>The Plant journal : for cell and molecular biology, 2018-03, Vol.94 (2)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000264932259 ; 000000016624636X ; 0000000267023560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1459405$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Laursen, Tomas</creatorcontrib><creatorcontrib>Stonebloom, Solomon H.</creatorcontrib><creatorcontrib>Pidatala, Venkataramana R.</creatorcontrib><creatorcontrib>Birdseye, Devon S.</creatorcontrib><creatorcontrib>Clausen, Mads H.</creatorcontrib><creatorcontrib>Mortimer, Jenny C.</creatorcontrib><creatorcontrib>Scheller, Henrik Vibe</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Bifunctional glycosyltransferases catalyze both extension and termination of pectic galactan oligosaccharides</title><title>The Plant journal : for cell and molecular biology</title><description>Pectins are the most complex polysaccharides of the plant cell wall. Based on the number of methylations, acetylations and glycosidic linkages present in their structures, it is estimated that up to 67 transferase activities are involved in pectin biosynthesis. Pectic galactans constitute a major part of pectin in the form of side-chains of rhamnogalacturonan-I. In Arabidopsis, galactan synthase 1 (GALS1) catalyzes the addition of galactose units from UDP-Gal to growing β-1,4-galactan chains. However, the mechanisms for obtaining varying degrees of polymerization remain poorly understood. In this study, we show that AtGALS1 is bifunctional, catalyzing both the transfer of galactose from UDP-α-d-Gal and the transfer of an arabinopyranose from UDP-β-l-Arapto galactan chains. The two substrates share a similar structure, but UDP-α-d-Gal is the preferred substrate, with a 10-fold higher affinity. Transfer of Arapto galactan prevents further addition of galactose residues, resulting in a lower degree of polymerization. We show that this dual activity occurs both in vitro and in vivo. The herein described bifunctionality of AtGALS1 may suggest that plants can produce the incredible structural diversity of polysaccharides without a dedicated glycosyltransferase for each glycosidic linkage.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNjE1OwzAQha0KpIafBTcYsU-xcZK2WxCIA7BgVw3TSeLKtavMVCKcHiNxAN7mSU_f-4y5c3blSh70dFg5v-nswlTOd23tnf-4MJXddrZeN-5xaa5EDta6te-ayhyfQn9OpCEnjDDEmbLMUSdM0vOEwgKEinH-ZvjMOgJ_KScpOGDag_J0DAl_75B7OHExEQwYkRTLFMOQBYlGnMKe5cZc9hiFb__62ty_vrw_v9VZNOyEgjKNlFMqnp1r2m1jW_8v6AfQfVE0</recordid><startdate>20180322</startdate><enddate>20180322</enddate><creator>Laursen, Tomas</creator><creator>Stonebloom, Solomon H.</creator><creator>Pidatala, Venkataramana R.</creator><creator>Birdseye, Devon S.</creator><creator>Clausen, Mads H.</creator><creator>Mortimer, Jenny C.</creator><creator>Scheller, Henrik Vibe</creator><general>Society for Experimental Biology</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000264932259</orcidid><orcidid>https://orcid.org/000000016624636X</orcidid><orcidid>https://orcid.org/0000000267023560</orcidid></search><sort><creationdate>20180322</creationdate><title>Bifunctional glycosyltransferases catalyze both extension and termination of pectic galactan oligosaccharides</title><author>Laursen, Tomas ; Stonebloom, Solomon H. ; Pidatala, Venkataramana R. ; Birdseye, Devon S. ; Clausen, Mads H. ; Mortimer, Jenny C. ; Scheller, Henrik Vibe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_14594053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laursen, Tomas</creatorcontrib><creatorcontrib>Stonebloom, Solomon H.</creatorcontrib><creatorcontrib>Pidatala, Venkataramana R.</creatorcontrib><creatorcontrib>Birdseye, Devon S.</creatorcontrib><creatorcontrib>Clausen, Mads H.</creatorcontrib><creatorcontrib>Mortimer, Jenny C.</creatorcontrib><creatorcontrib>Scheller, Henrik Vibe</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laursen, Tomas</au><au>Stonebloom, Solomon H.</au><au>Pidatala, Venkataramana R.</au><au>Birdseye, Devon S.</au><au>Clausen, Mads H.</au><au>Mortimer, Jenny C.</au><au>Scheller, Henrik Vibe</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifunctional glycosyltransferases catalyze both extension and termination of pectic galactan oligosaccharides</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><date>2018-03-22</date><risdate>2018</risdate><volume>94</volume><issue>2</issue><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Pectins are the most complex polysaccharides of the plant cell wall. Based on the number of methylations, acetylations and glycosidic linkages present in their structures, it is estimated that up to 67 transferase activities are involved in pectin biosynthesis. Pectic galactans constitute a major part of pectin in the form of side-chains of rhamnogalacturonan-I. In Arabidopsis, galactan synthase 1 (GALS1) catalyzes the addition of galactose units from UDP-Gal to growing β-1,4-galactan chains. However, the mechanisms for obtaining varying degrees of polymerization remain poorly understood. In this study, we show that AtGALS1 is bifunctional, catalyzing both the transfer of galactose from UDP-α-d-Gal and the transfer of an arabinopyranose from UDP-β-l-Arapto galactan chains. The two substrates share a similar structure, but UDP-α-d-Gal is the preferred substrate, with a 10-fold higher affinity. Transfer of Arapto galactan prevents further addition of galactose residues, resulting in a lower degree of polymerization. We show that this dual activity occurs both in vitro and in vivo. The herein described bifunctionality of AtGALS1 may suggest that plants can produce the incredible structural diversity of polysaccharides without a dedicated glycosyltransferase for each glycosidic linkage.</abstract><cop>United States</cop><pub>Society for Experimental Biology</pub><doi>10.1111/tpj.13860</doi><orcidid>https://orcid.org/0000000264932259</orcidid><orcidid>https://orcid.org/000000016624636X</orcidid><orcidid>https://orcid.org/0000000267023560</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2018-03, Vol.94 (2) |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_osti_scitechconnect_1459405 |
source | Wiley-Blackwell Journals; IngentaConnect; Wiley Online Library Free Content; EZB Electronic Journals Library |
subjects | BASIC BIOLOGICAL SCIENCES |
title | Bifunctional glycosyltransferases catalyze both extension and termination of pectic galactan oligosaccharides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifunctional%20glycosyltransferases%20catalyze%20both%20extension%20and%20termination%20of%20pectic%20galactan%20oligosaccharides&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Laursen,%20Tomas&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2018-03-22&rft.volume=94&rft.issue=2&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.13860&rft_dat=%3Costi%3E1459405%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |