Observationally derived rise in methane surface forcing mediated by water vapour trends

Atmospheric methane (CH 4 ) mixing ratios exhibited a plateau between 1995 and 2006 and have subsequently been increasing. While there are a number of competing explanations for the temporal evolution of this greenhouse gas, these prominent features in the temporal trajectory of atmospheric CH 4 are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature geoscience 2018-04, Vol.11 (4), p.238-243
Hauptverfasser: Feldman, D. R., Collins, W. D., Biraud, S. C., Risser, M. D., Turner, D. D., Gero, P. J., Tadić, J., Helmig, D., Xie, S., Mlawer, E. J., Shippert, T. R, Torn, M. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 243
container_issue 4
container_start_page 238
container_title Nature geoscience
container_volume 11
creator Feldman, D. R.
Collins, W. D.
Biraud, S. C.
Risser, M. D.
Turner, D. D.
Gero, P. J.
Tadić, J.
Helmig, D.
Xie, S.
Mlawer, E. J.
Shippert, T. R
Torn, M. S.
description Atmospheric methane (CH 4 ) mixing ratios exhibited a plateau between 1995 and 2006 and have subsequently been increasing. While there are a number of competing explanations for the temporal evolution of this greenhouse gas, these prominent features in the temporal trajectory of atmospheric CH 4 are expected to perturb the surface energy balance through radiative forcing, largely due to the infrared radiative absorption features of CH 4 . However, to date this has been determined strictly through radiative transfer calculations. Here, we present a quantified observation of the time series of clear-sky radiative forcing by CH 4 at the surface from 2002 to 2012 at a single site derived from spectroscopic measurements along with line-by-line calculations using ancillary data. There was no significant trend in CH 4 forcing between 2002 and 2006, but since then, the trend in forcing was 0.026 ± 0.006 (99.7% CI) W m 2  yr −1 . The seasonal-cycle amplitude and secular trends in observed forcing are influenced by a corresponding seasonal cycle and trend in atmospheric CH 4 . However, we find that we must account for the overlapping absorption effects of atmospheric water vapour (H 2 O) and CH 4 to explain the observations fully. Thus, the determination of CH 4 radiative forcing requires accurate observations of both the spatiotemporal distribution of CH 4 and the vertically resolved trends in H 2 O. Observations of the radiative forcing from methane at the Earth’s surface are influenced by absorption effects from water vapour, according to spectroscopic measurements and line-by-line calculations.
doi_str_mv 10.1038/s41561-018-0085-9
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1458639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2021753536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-71f15d7d9c31d76f0d2edf5b374a72faff753306f483167b82849be194301c903</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvQ82qy-T5K8QsKvSgeQzYfbaTu1iSt9N-bsoonTzMMz7zMPABcYnSDEZG3mWLGcYOwbBCSrFFHYIIFaxukkDz-7aWip-As53eEOKKCTcDboss-7UyJQ2_W6z10PsWddzDF7GHs4YcvK9N7mLcpGOthGJKN_bLOXTSlgt0eftUmwZ3ZDNsES_K9y-fgJJh19hc_dQpeH-5fZk_NfPH4PLubN5ZIXhqBA2ZOOGUJdoIH5FrvAuuIoEa0wYQgGCGIByoJ5qKTraSq81hRgrBViEzB1Zg75BJ1trF4u7JD33tbNKZMcqIqdD1CmzR8bn0u-r1eWv_NukVtVUMY4ZXCI2XTkHPyQW9S_DBprzHSB8l6lKyrZH2QrA_J7biTK9svffpL_n_pG_3HftQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021753536</pqid></control><display><type>article</type><title>Observationally derived rise in methane surface forcing mediated by water vapour trends</title><source>Alma/SFX Local Collection</source><creator>Feldman, D. R. ; Collins, W. D. ; Biraud, S. C. ; Risser, M. D. ; Turner, D. D. ; Gero, P. J. ; Tadić, J. ; Helmig, D. ; Xie, S. ; Mlawer, E. J. ; Shippert, T. R ; Torn, M. S.</creator><creatorcontrib>Feldman, D. R. ; Collins, W. D. ; Biraud, S. C. ; Risser, M. D. ; Turner, D. D. ; Gero, P. J. ; Tadić, J. ; Helmig, D. ; Xie, S. ; Mlawer, E. J. ; Shippert, T. R ; Torn, M. S. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center</creatorcontrib><description>Atmospheric methane (CH 4 ) mixing ratios exhibited a plateau between 1995 and 2006 and have subsequently been increasing. While there are a number of competing explanations for the temporal evolution of this greenhouse gas, these prominent features in the temporal trajectory of atmospheric CH 4 are expected to perturb the surface energy balance through radiative forcing, largely due to the infrared radiative absorption features of CH 4 . However, to date this has been determined strictly through radiative transfer calculations. Here, we present a quantified observation of the time series of clear-sky radiative forcing by CH 4 at the surface from 2002 to 2012 at a single site derived from spectroscopic measurements along with line-by-line calculations using ancillary data. There was no significant trend in CH 4 forcing between 2002 and 2006, but since then, the trend in forcing was 0.026 ± 0.006 (99.7% CI) W m 2  yr −1 . The seasonal-cycle amplitude and secular trends in observed forcing are influenced by a corresponding seasonal cycle and trend in atmospheric CH 4 . However, we find that we must account for the overlapping absorption effects of atmospheric water vapour (H 2 O) and CH 4 to explain the observations fully. Thus, the determination of CH 4 radiative forcing requires accurate observations of both the spatiotemporal distribution of CH 4 and the vertically resolved trends in H 2 O. Observations of the radiative forcing from methane at the Earth’s surface are influenced by absorption effects from water vapour, according to spectroscopic measurements and line-by-line calculations.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-018-0085-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/35/824 ; 704/106/694 ; Absorption ; Atmospheric methane ; Atmospheric water ; Atmospheric water vapor ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Energy balance ; ENVIRONMENTAL SCIENCES ; Evolution ; Geochemistry ; Geology ; Geophysics/Geodesy ; Greenhouse effect ; Greenhouse gases ; Mathematical analysis ; Methane ; Mixing ratio ; Radiative forcing ; Radiative transfer ; Radiative transfer calculations ; Seasonal variation ; Sky ; Spatial distribution ; Surface chemistry ; Surface energy ; Surface energy balance ; Surface properties ; Temporal distribution ; Trends ; Water vapor ; Water vapour</subject><ispartof>Nature geoscience, 2018-04, Vol.11 (4), p.238-243</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Apr 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-71f15d7d9c31d76f0d2edf5b374a72faff753306f483167b82849be194301c903</citedby><cites>FETCH-LOGICAL-c386t-71f15d7d9c31d76f0d2edf5b374a72faff753306f483167b82849be194301c903</cites><orcidid>0000-0003-1097-897X ; 0000-0002-4463-9848 ; 0000-0003-3365-5233 ; 0000000333655233 ; 000000031097897X ; 0000000244639848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1458639$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Feldman, D. R.</creatorcontrib><creatorcontrib>Collins, W. D.</creatorcontrib><creatorcontrib>Biraud, S. C.</creatorcontrib><creatorcontrib>Risser, M. D.</creatorcontrib><creatorcontrib>Turner, D. D.</creatorcontrib><creatorcontrib>Gero, P. J.</creatorcontrib><creatorcontrib>Tadić, J.</creatorcontrib><creatorcontrib>Helmig, D.</creatorcontrib><creatorcontrib>Xie, S.</creatorcontrib><creatorcontrib>Mlawer, E. J.</creatorcontrib><creatorcontrib>Shippert, T. R</creatorcontrib><creatorcontrib>Torn, M. S.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center</creatorcontrib><title>Observationally derived rise in methane surface forcing mediated by water vapour trends</title><title>Nature geoscience</title><addtitle>Nature Geosci</addtitle><description>Atmospheric methane (CH 4 ) mixing ratios exhibited a plateau between 1995 and 2006 and have subsequently been increasing. While there are a number of competing explanations for the temporal evolution of this greenhouse gas, these prominent features in the temporal trajectory of atmospheric CH 4 are expected to perturb the surface energy balance through radiative forcing, largely due to the infrared radiative absorption features of CH 4 . However, to date this has been determined strictly through radiative transfer calculations. Here, we present a quantified observation of the time series of clear-sky radiative forcing by CH 4 at the surface from 2002 to 2012 at a single site derived from spectroscopic measurements along with line-by-line calculations using ancillary data. There was no significant trend in CH 4 forcing between 2002 and 2006, but since then, the trend in forcing was 0.026 ± 0.006 (99.7% CI) W m 2  yr −1 . The seasonal-cycle amplitude and secular trends in observed forcing are influenced by a corresponding seasonal cycle and trend in atmospheric CH 4 . However, we find that we must account for the overlapping absorption effects of atmospheric water vapour (H 2 O) and CH 4 to explain the observations fully. Thus, the determination of CH 4 radiative forcing requires accurate observations of both the spatiotemporal distribution of CH 4 and the vertically resolved trends in H 2 O. Observations of the radiative forcing from methane at the Earth’s surface are influenced by absorption effects from water vapour, according to spectroscopic measurements and line-by-line calculations.</description><subject>704/106/35/824</subject><subject>704/106/694</subject><subject>Absorption</subject><subject>Atmospheric methane</subject><subject>Atmospheric water</subject><subject>Atmospheric water vapor</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Energy balance</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Evolution</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Mathematical analysis</subject><subject>Methane</subject><subject>Mixing ratio</subject><subject>Radiative forcing</subject><subject>Radiative transfer</subject><subject>Radiative transfer calculations</subject><subject>Seasonal variation</subject><subject>Sky</subject><subject>Spatial distribution</subject><subject>Surface chemistry</subject><subject>Surface energy</subject><subject>Surface energy balance</subject><subject>Surface properties</subject><subject>Temporal distribution</subject><subject>Trends</subject><subject>Water vapor</subject><subject>Water vapour</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvQ82qy-T5K8QsKvSgeQzYfbaTu1iSt9N-bsoonTzMMz7zMPABcYnSDEZG3mWLGcYOwbBCSrFFHYIIFaxukkDz-7aWip-As53eEOKKCTcDboss-7UyJQ2_W6z10PsWddzDF7GHs4YcvK9N7mLcpGOthGJKN_bLOXTSlgt0eftUmwZ3ZDNsES_K9y-fgJJh19hc_dQpeH-5fZk_NfPH4PLubN5ZIXhqBA2ZOOGUJdoIH5FrvAuuIoEa0wYQgGCGIByoJ5qKTraSq81hRgrBViEzB1Zg75BJ1trF4u7JD33tbNKZMcqIqdD1CmzR8bn0u-r1eWv_NukVtVUMY4ZXCI2XTkHPyQW9S_DBprzHSB8l6lKyrZH2QrA_J7biTK9svffpL_n_pG_3HftQ</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Feldman, D. R.</creator><creator>Collins, W. D.</creator><creator>Biraud, S. C.</creator><creator>Risser, M. D.</creator><creator>Turner, D. D.</creator><creator>Gero, P. J.</creator><creator>Tadić, J.</creator><creator>Helmig, D.</creator><creator>Xie, S.</creator><creator>Mlawer, E. J.</creator><creator>Shippert, T. R</creator><creator>Torn, M. S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1097-897X</orcidid><orcidid>https://orcid.org/0000-0002-4463-9848</orcidid><orcidid>https://orcid.org/0000-0003-3365-5233</orcidid><orcidid>https://orcid.org/0000000333655233</orcidid><orcidid>https://orcid.org/000000031097897X</orcidid><orcidid>https://orcid.org/0000000244639848</orcidid></search><sort><creationdate>20180401</creationdate><title>Observationally derived rise in methane surface forcing mediated by water vapour trends</title><author>Feldman, D. R. ; Collins, W. D. ; Biraud, S. C. ; Risser, M. D. ; Turner, D. D. ; Gero, P. J. ; Tadić, J. ; Helmig, D. ; Xie, S. ; Mlawer, E. J. ; Shippert, T. R ; Torn, M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-71f15d7d9c31d76f0d2edf5b374a72faff753306f483167b82849be194301c903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>704/106/35/824</topic><topic>704/106/694</topic><topic>Absorption</topic><topic>Atmospheric methane</topic><topic>Atmospheric water</topic><topic>Atmospheric water vapor</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Energy balance</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Evolution</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Mathematical analysis</topic><topic>Methane</topic><topic>Mixing ratio</topic><topic>Radiative forcing</topic><topic>Radiative transfer</topic><topic>Radiative transfer calculations</topic><topic>Seasonal variation</topic><topic>Sky</topic><topic>Spatial distribution</topic><topic>Surface chemistry</topic><topic>Surface energy</topic><topic>Surface energy balance</topic><topic>Surface properties</topic><topic>Temporal distribution</topic><topic>Trends</topic><topic>Water vapor</topic><topic>Water vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feldman, D. R.</creatorcontrib><creatorcontrib>Collins, W. D.</creatorcontrib><creatorcontrib>Biraud, S. C.</creatorcontrib><creatorcontrib>Risser, M. D.</creatorcontrib><creatorcontrib>Turner, D. D.</creatorcontrib><creatorcontrib>Gero, P. J.</creatorcontrib><creatorcontrib>Tadić, J.</creatorcontrib><creatorcontrib>Helmig, D.</creatorcontrib><creatorcontrib>Xie, S.</creatorcontrib><creatorcontrib>Mlawer, E. J.</creatorcontrib><creatorcontrib>Shippert, T. R</creatorcontrib><creatorcontrib>Torn, M. S.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feldman, D. R.</au><au>Collins, W. D.</au><au>Biraud, S. C.</au><au>Risser, M. D.</au><au>Turner, D. D.</au><au>Gero, P. J.</au><au>Tadić, J.</au><au>Helmig, D.</au><au>Xie, S.</au><au>Mlawer, E. J.</au><au>Shippert, T. R</au><au>Torn, M. S.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observationally derived rise in methane surface forcing mediated by water vapour trends</atitle><jtitle>Nature geoscience</jtitle><stitle>Nature Geosci</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>11</volume><issue>4</issue><spage>238</spage><epage>243</epage><pages>238-243</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>Atmospheric methane (CH 4 ) mixing ratios exhibited a plateau between 1995 and 2006 and have subsequently been increasing. While there are a number of competing explanations for the temporal evolution of this greenhouse gas, these prominent features in the temporal trajectory of atmospheric CH 4 are expected to perturb the surface energy balance through radiative forcing, largely due to the infrared radiative absorption features of CH 4 . However, to date this has been determined strictly through radiative transfer calculations. Here, we present a quantified observation of the time series of clear-sky radiative forcing by CH 4 at the surface from 2002 to 2012 at a single site derived from spectroscopic measurements along with line-by-line calculations using ancillary data. There was no significant trend in CH 4 forcing between 2002 and 2006, but since then, the trend in forcing was 0.026 ± 0.006 (99.7% CI) W m 2  yr −1 . The seasonal-cycle amplitude and secular trends in observed forcing are influenced by a corresponding seasonal cycle and trend in atmospheric CH 4 . However, we find that we must account for the overlapping absorption effects of atmospheric water vapour (H 2 O) and CH 4 to explain the observations fully. Thus, the determination of CH 4 radiative forcing requires accurate observations of both the spatiotemporal distribution of CH 4 and the vertically resolved trends in H 2 O. Observations of the radiative forcing from methane at the Earth’s surface are influenced by absorption effects from water vapour, according to spectroscopic measurements and line-by-line calculations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-018-0085-9</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1097-897X</orcidid><orcidid>https://orcid.org/0000-0002-4463-9848</orcidid><orcidid>https://orcid.org/0000-0003-3365-5233</orcidid><orcidid>https://orcid.org/0000000333655233</orcidid><orcidid>https://orcid.org/000000031097897X</orcidid><orcidid>https://orcid.org/0000000244639848</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1752-0894
ispartof Nature geoscience, 2018-04, Vol.11 (4), p.238-243
issn 1752-0894
1752-0908
language eng
recordid cdi_osti_scitechconnect_1458639
source Alma/SFX Local Collection
subjects 704/106/35/824
704/106/694
Absorption
Atmospheric methane
Atmospheric water
Atmospheric water vapor
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Energy balance
ENVIRONMENTAL SCIENCES
Evolution
Geochemistry
Geology
Geophysics/Geodesy
Greenhouse effect
Greenhouse gases
Mathematical analysis
Methane
Mixing ratio
Radiative forcing
Radiative transfer
Radiative transfer calculations
Seasonal variation
Sky
Spatial distribution
Surface chemistry
Surface energy
Surface energy balance
Surface properties
Temporal distribution
Trends
Water vapor
Water vapour
title Observationally derived rise in methane surface forcing mediated by water vapour trends
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A52%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observationally%20derived%20rise%20in%20methane%20surface%20forcing%20mediated%20by%20water%20vapour%20trends&rft.jtitle=Nature%20geoscience&rft.au=Feldman,%20D.%20R.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2018-04-01&rft.volume=11&rft.issue=4&rft.spage=238&rft.epage=243&rft.pages=238-243&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-018-0085-9&rft_dat=%3Cproquest_osti_%3E2021753536%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2021753536&rft_id=info:pmid/&rfr_iscdi=true