Lithium‐Pretreated Hard Carbon as High‐Performance Sodium‐Ion Battery Anodes

Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2018-08, Vol.8 (24), p.n/a
Hauptverfasser: Xiao, Biwei, Soto, Fernando A., Gu, Meng, Han, Kee Sung, Song, Junhua, Wang, Hui, Engelhard, Mark H., Murugesan, Vijayakumar, Mueller, Karl T., Reed, David, Sprenkle, Vincent L., Balbuena, Perla B., Li, Xiaolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Advanced energy materials
container_volume 8
creator Xiao, Biwei
Soto, Fernando A.
Gu, Meng
Han, Kee Sung
Song, Junhua
Wang, Hui
Engelhard, Mark H.
Murugesan, Vijayakumar
Mueller, Karl T.
Reed, David
Sprenkle, Vincent L.
Balbuena, Perla B.
Li, Xiaolin
description Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application of lithium‐pretreated HC (LPHC) as high‐performance anode materials for SIBs by manipulating the solid electrolyte interphase in tetraglyme (TEGDME)‐based electrolyte. The LPHC in TEGDME can 1) deliver > 92% ICE and ≈220 mAh g−1 specific capacity, twice of the capacity (≈100 mAh g−1) in carbonate electrolyte; 2) achieve > 85% capacity retention over 1000 cycles at 1000 mA g−1 current density (4 C rate, 1 C = 250 mA g−1) with a specific capacity of ≈150 mAh g−1, ≈15 times of the capacity (10 mAh g−1) in carbonate. The full cell of Na3V2(PO4)3‐LPHC in TEGDME demonstrated close to theoretical specific capacity of ≈98 mAh g−1 based on Na3V2(PO4)3 cathode, ≈2.5 times of the value (≈40 mAh g−1) with nontreated HC. This work provides new perception on the anode development for SIBs. Hard carbon (HC) with high initial Coulombic efficiency (ICE) and good rate capability for sodium‐ion batteries is enabled by lithium‐pretreatment in tetraglyme electrolyte. The lithium‐pretreated HC can demonstrate >92% ICE and ≈150 mAh g−1 specific capacity at 4 C rate (1 C = 250 mA g−1), ≈15 times of the capacity (10 mAh g−1) in carbonate, along with good full cell performance.
doi_str_mv 10.1002/aenm.201801441
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1458599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2093213345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3811-993cdf0fc3e8e318bc6a569a7de44fd3d38fc2da0323d726f92febc5a568dca73</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EElXplnUE6xS_kjrLUhVaqTzEY2259pimauJiu0LZ8Ql8I19CqqCyZDYzi3NmRhehc4KHBGN6paCuhhQTgQnn5Aj1SE54mguOjw8zo6doEMIat8ULghnroadFGVflrvr-_Hr0ED2oCCaZKW-SifJLVycqJLPybbUHwFvnK1VrSJ6d6ax5i1yrGME3ybh2BsIZOrFqE2Dw2_vo9Wb6Mpmli4fb-WS8SDUThKRFwbSx2GoGAhgRS52rLC_UyADn1jDDhNXUKMwoMyOa24JaWOqshYTRasT66KLb60IsZdBlBL3Srq5BR0l4JrL2RB9ddtDWu_cdhCjXbufr9i9JccEoYYxnLTXsKO1dCB6s3PqyUr6RBMt9vnKfrzzk2wpFJ3yUG2j-oeV4en_35_4ANrKBTg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093213345</pqid></control><display><type>article</type><title>Lithium‐Pretreated Hard Carbon as High‐Performance Sodium‐Ion Battery Anodes</title><source>Access via Wiley Online Library</source><creator>Xiao, Biwei ; Soto, Fernando A. ; Gu, Meng ; Han, Kee Sung ; Song, Junhua ; Wang, Hui ; Engelhard, Mark H. ; Murugesan, Vijayakumar ; Mueller, Karl T. ; Reed, David ; Sprenkle, Vincent L. ; Balbuena, Perla B. ; Li, Xiaolin</creator><creatorcontrib>Xiao, Biwei ; Soto, Fernando A. ; Gu, Meng ; Han, Kee Sung ; Song, Junhua ; Wang, Hui ; Engelhard, Mark H. ; Murugesan, Vijayakumar ; Mueller, Karl T. ; Reed, David ; Sprenkle, Vincent L. ; Balbuena, Perla B. ; Li, Xiaolin</creatorcontrib><description>Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application of lithium‐pretreated HC (LPHC) as high‐performance anode materials for SIBs by manipulating the solid electrolyte interphase in tetraglyme (TEGDME)‐based electrolyte. The LPHC in TEGDME can 1) deliver &gt; 92% ICE and ≈220 mAh g−1 specific capacity, twice of the capacity (≈100 mAh g−1) in carbonate electrolyte; 2) achieve &gt; 85% capacity retention over 1000 cycles at 1000 mA g−1 current density (4 C rate, 1 C = 250 mA g−1) with a specific capacity of ≈150 mAh g−1, ≈15 times of the capacity (10 mAh g−1) in carbonate. The full cell of Na3V2(PO4)3‐LPHC in TEGDME demonstrated close to theoretical specific capacity of ≈98 mAh g−1 based on Na3V2(PO4)3 cathode, ≈2.5 times of the value (≈40 mAh g−1) with nontreated HC. This work provides new perception on the anode development for SIBs. Hard carbon (HC) with high initial Coulombic efficiency (ICE) and good rate capability for sodium‐ion batteries is enabled by lithium‐pretreatment in tetraglyme electrolyte. The lithium‐pretreated HC can demonstrate &gt;92% ICE and ≈150 mAh g−1 specific capacity at 4 C rate (1 C = 250 mA g−1), ≈15 times of the capacity (10 mAh g−1) in carbonate, along with good full cell performance.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201801441</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Batteries ; Carbon ; Electrode materials ; Electrolytes ; hard carbon ; Lithium ; lithium‐pretreatment ; Sodium-ion batteries ; Solid electrolytes ; tetraglyme</subject><ispartof>Advanced energy materials, 2018-08, Vol.8 (24), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3811-993cdf0fc3e8e318bc6a569a7de44fd3d38fc2da0323d726f92febc5a568dca73</citedby><cites>FETCH-LOGICAL-c3811-993cdf0fc3e8e318bc6a569a7de44fd3d38fc2da0323d726f92febc5a568dca73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201801441$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201801441$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1458599$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Biwei</creatorcontrib><creatorcontrib>Soto, Fernando A.</creatorcontrib><creatorcontrib>Gu, Meng</creatorcontrib><creatorcontrib>Han, Kee Sung</creatorcontrib><creatorcontrib>Song, Junhua</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Engelhard, Mark H.</creatorcontrib><creatorcontrib>Murugesan, Vijayakumar</creatorcontrib><creatorcontrib>Mueller, Karl T.</creatorcontrib><creatorcontrib>Reed, David</creatorcontrib><creatorcontrib>Sprenkle, Vincent L.</creatorcontrib><creatorcontrib>Balbuena, Perla B.</creatorcontrib><creatorcontrib>Li, Xiaolin</creatorcontrib><title>Lithium‐Pretreated Hard Carbon as High‐Performance Sodium‐Ion Battery Anodes</title><title>Advanced energy materials</title><description>Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application of lithium‐pretreated HC (LPHC) as high‐performance anode materials for SIBs by manipulating the solid electrolyte interphase in tetraglyme (TEGDME)‐based electrolyte. The LPHC in TEGDME can 1) deliver &gt; 92% ICE and ≈220 mAh g−1 specific capacity, twice of the capacity (≈100 mAh g−1) in carbonate electrolyte; 2) achieve &gt; 85% capacity retention over 1000 cycles at 1000 mA g−1 current density (4 C rate, 1 C = 250 mA g−1) with a specific capacity of ≈150 mAh g−1, ≈15 times of the capacity (10 mAh g−1) in carbonate. The full cell of Na3V2(PO4)3‐LPHC in TEGDME demonstrated close to theoretical specific capacity of ≈98 mAh g−1 based on Na3V2(PO4)3 cathode, ≈2.5 times of the value (≈40 mAh g−1) with nontreated HC. This work provides new perception on the anode development for SIBs. Hard carbon (HC) with high initial Coulombic efficiency (ICE) and good rate capability for sodium‐ion batteries is enabled by lithium‐pretreatment in tetraglyme electrolyte. The lithium‐pretreated HC can demonstrate &gt;92% ICE and ≈150 mAh g−1 specific capacity at 4 C rate (1 C = 250 mA g−1), ≈15 times of the capacity (10 mAh g−1) in carbonate, along with good full cell performance.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>hard carbon</subject><subject>Lithium</subject><subject>lithium‐pretreatment</subject><subject>Sodium-ion batteries</subject><subject>Solid electrolytes</subject><subject>tetraglyme</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EElXplnUE6xS_kjrLUhVaqTzEY2259pimauJiu0LZ8Ql8I19CqqCyZDYzi3NmRhehc4KHBGN6paCuhhQTgQnn5Aj1SE54mguOjw8zo6doEMIat8ULghnroadFGVflrvr-_Hr0ED2oCCaZKW-SifJLVycqJLPybbUHwFvnK1VrSJ6d6ax5i1yrGME3ybh2BsIZOrFqE2Dw2_vo9Wb6Mpmli4fb-WS8SDUThKRFwbSx2GoGAhgRS52rLC_UyADn1jDDhNXUKMwoMyOa24JaWOqshYTRasT66KLb60IsZdBlBL3Srq5BR0l4JrL2RB9ddtDWu_cdhCjXbufr9i9JccEoYYxnLTXsKO1dCB6s3PqyUr6RBMt9vnKfrzzk2wpFJ3yUG2j-oeV4en_35_4ANrKBTg</recordid><startdate>20180827</startdate><enddate>20180827</enddate><creator>Xiao, Biwei</creator><creator>Soto, Fernando A.</creator><creator>Gu, Meng</creator><creator>Han, Kee Sung</creator><creator>Song, Junhua</creator><creator>Wang, Hui</creator><creator>Engelhard, Mark H.</creator><creator>Murugesan, Vijayakumar</creator><creator>Mueller, Karl T.</creator><creator>Reed, David</creator><creator>Sprenkle, Vincent L.</creator><creator>Balbuena, Perla B.</creator><creator>Li, Xiaolin</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20180827</creationdate><title>Lithium‐Pretreated Hard Carbon as High‐Performance Sodium‐Ion Battery Anodes</title><author>Xiao, Biwei ; Soto, Fernando A. ; Gu, Meng ; Han, Kee Sung ; Song, Junhua ; Wang, Hui ; Engelhard, Mark H. ; Murugesan, Vijayakumar ; Mueller, Karl T. ; Reed, David ; Sprenkle, Vincent L. ; Balbuena, Perla B. ; Li, Xiaolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3811-993cdf0fc3e8e318bc6a569a7de44fd3d38fc2da0323d726f92febc5a568dca73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>hard carbon</topic><topic>Lithium</topic><topic>lithium‐pretreatment</topic><topic>Sodium-ion batteries</topic><topic>Solid electrolytes</topic><topic>tetraglyme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Biwei</creatorcontrib><creatorcontrib>Soto, Fernando A.</creatorcontrib><creatorcontrib>Gu, Meng</creatorcontrib><creatorcontrib>Han, Kee Sung</creatorcontrib><creatorcontrib>Song, Junhua</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Engelhard, Mark H.</creatorcontrib><creatorcontrib>Murugesan, Vijayakumar</creatorcontrib><creatorcontrib>Mueller, Karl T.</creatorcontrib><creatorcontrib>Reed, David</creatorcontrib><creatorcontrib>Sprenkle, Vincent L.</creatorcontrib><creatorcontrib>Balbuena, Perla B.</creatorcontrib><creatorcontrib>Li, Xiaolin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Biwei</au><au>Soto, Fernando A.</au><au>Gu, Meng</au><au>Han, Kee Sung</au><au>Song, Junhua</au><au>Wang, Hui</au><au>Engelhard, Mark H.</au><au>Murugesan, Vijayakumar</au><au>Mueller, Karl T.</au><au>Reed, David</au><au>Sprenkle, Vincent L.</au><au>Balbuena, Perla B.</au><au>Li, Xiaolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium‐Pretreated Hard Carbon as High‐Performance Sodium‐Ion Battery Anodes</atitle><jtitle>Advanced energy materials</jtitle><date>2018-08-27</date><risdate>2018</risdate><volume>8</volume><issue>24</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application of lithium‐pretreated HC (LPHC) as high‐performance anode materials for SIBs by manipulating the solid electrolyte interphase in tetraglyme (TEGDME)‐based electrolyte. The LPHC in TEGDME can 1) deliver &gt; 92% ICE and ≈220 mAh g−1 specific capacity, twice of the capacity (≈100 mAh g−1) in carbonate electrolyte; 2) achieve &gt; 85% capacity retention over 1000 cycles at 1000 mA g−1 current density (4 C rate, 1 C = 250 mA g−1) with a specific capacity of ≈150 mAh g−1, ≈15 times of the capacity (10 mAh g−1) in carbonate. The full cell of Na3V2(PO4)3‐LPHC in TEGDME demonstrated close to theoretical specific capacity of ≈98 mAh g−1 based on Na3V2(PO4)3 cathode, ≈2.5 times of the value (≈40 mAh g−1) with nontreated HC. This work provides new perception on the anode development for SIBs. Hard carbon (HC) with high initial Coulombic efficiency (ICE) and good rate capability for sodium‐ion batteries is enabled by lithium‐pretreatment in tetraglyme electrolyte. The lithium‐pretreated HC can demonstrate &gt;92% ICE and ≈150 mAh g−1 specific capacity at 4 C rate (1 C = 250 mA g−1), ≈15 times of the capacity (10 mAh g−1) in carbonate, along with good full cell performance.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201801441</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2018-08, Vol.8 (24), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_osti_scitechconnect_1458599
source Access via Wiley Online Library
subjects Anodes
Batteries
Carbon
Electrode materials
Electrolytes
hard carbon
Lithium
lithium‐pretreatment
Sodium-ion batteries
Solid electrolytes
tetraglyme
title Lithium‐Pretreated Hard Carbon as High‐Performance Sodium‐Ion Battery Anodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A19%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%E2%80%90Pretreated%20Hard%20Carbon%20as%20High%E2%80%90Performance%20Sodium%E2%80%90Ion%20Battery%20Anodes&rft.jtitle=Advanced%20energy%20materials&rft.au=Xiao,%20Biwei&rft.date=2018-08-27&rft.volume=8&rft.issue=24&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201801441&rft_dat=%3Cproquest_osti_%3E2093213345%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2093213345&rft_id=info:pmid/&rfr_iscdi=true