Characterization of topology optimized Ti-6Al-4V components using electron beam powder bed fusion
The use of manufacturing to generate topology optimized components shows promise for designers. However, designers who assume that additive manufacturing follows traditional manufacturing techniques may be misled due to the nuances in specific techniques. Since commercial topology optimization softw...
Gespeichert in:
Veröffentlicht in: | Additive manufacturing 2017-12, Vol.19 (C) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | |
container_title | Additive manufacturing |
container_volume | 19 |
creator | Yoder, Sean L. Morgan, Shawn Kinzy, Corinne Barnes, Erin Kirka, Michael M. Paquit, Vincent C. Nandwana, Peeyush Plotkowski, Alex J. Dehoff, Ryan R. Babu, Sudarsanam Suresh |
description | The use of manufacturing to generate topology optimized components shows promise for designers. However, designers who assume that additive manufacturing follows traditional manufacturing techniques may be misled due to the nuances in specific techniques. Since commercial topology optimization software tools are neither designed to consider orientation of the parts nor large variations in properties, the goal of this research is to evaluate the limitations of an existing commercial topology optimization software (i.e. Inspire®) using electron beam powder bed fusion (i.e. Arcam®) to produce optimized Ti-6Al-4V alloy components. Emerging qualification tools from Oak Ridge National Laboratory including in-situ near-infrared imaging and log file data analysis were used to rationalize the final performance of components. While the weight savings of each optimized part exceeded the initial criteria, the failure loads and locations proved instrumental in providing insight to additive manufacturing with topology optimization. In conclusion, this research has shown the need for a comprehensive understanding of correlations between geometry, additive manufacturing processing conditions, defect generation, and microstructure for characterization of complex components such as those designed by topology optimization. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1458380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1458380</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_14583803</originalsourceid><addsrcrecordid>eNqNjM0KgkAUhYcoSMp3uLQXxv9pGVL0ANJWpvGqEzpXnInIp8-FD9DqfHC-czbMi6IwCXIR8u3KIuPJnvnWvjjnYRrnZxF5TBadnKRyOOlZOk0GqAFHI_XUfoFGpwc9Yw2lDrJLHyQPUDSMZNA4C2-rTQvYo3LTsnyiHGCkT43TwjU0S0_myHaN7C36ax7Y6XYti3tA1unKKu1QdYqMWV6qMElFLHj8l_QDgnxHUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characterization of topology optimized Ti-6Al-4V components using electron beam powder bed fusion</title><source>Alma/SFX Local Collection</source><creator>Yoder, Sean L. ; Morgan, Shawn ; Kinzy, Corinne ; Barnes, Erin ; Kirka, Michael M. ; Paquit, Vincent C. ; Nandwana, Peeyush ; Plotkowski, Alex J. ; Dehoff, Ryan R. ; Babu, Sudarsanam Suresh</creator><creatorcontrib>Yoder, Sean L. ; Morgan, Shawn ; Kinzy, Corinne ; Barnes, Erin ; Kirka, Michael M. ; Paquit, Vincent C. ; Nandwana, Peeyush ; Plotkowski, Alex J. ; Dehoff, Ryan R. ; Babu, Sudarsanam Suresh ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The use of manufacturing to generate topology optimized components shows promise for designers. However, designers who assume that additive manufacturing follows traditional manufacturing techniques may be misled due to the nuances in specific techniques. Since commercial topology optimization software tools are neither designed to consider orientation of the parts nor large variations in properties, the goal of this research is to evaluate the limitations of an existing commercial topology optimization software (i.e. Inspire®) using electron beam powder bed fusion (i.e. Arcam®) to produce optimized Ti-6Al-4V alloy components. Emerging qualification tools from Oak Ridge National Laboratory including in-situ near-infrared imaging and log file data analysis were used to rationalize the final performance of components. While the weight savings of each optimized part exceeded the initial criteria, the failure loads and locations proved instrumental in providing insight to additive manufacturing with topology optimization. In conclusion, this research has shown the need for a comprehensive understanding of correlations between geometry, additive manufacturing processing conditions, defect generation, and microstructure for characterization of complex components such as those designed by topology optimization.</description><identifier>ISSN: 2214-8604</identifier><identifier>EISSN: 2214-7810</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>Additive manufacturing ; Electron beam powder bed fusion ; ENGINEERING ; Ti64 ; Topology optimization</subject><ispartof>Additive manufacturing, 2017-12, Vol.19 (C)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000227758044 ; 0000000249791240 ; 0000000251471668 ; 0000000194569633 ; 0000000303312598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1458380$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoder, Sean L.</creatorcontrib><creatorcontrib>Morgan, Shawn</creatorcontrib><creatorcontrib>Kinzy, Corinne</creatorcontrib><creatorcontrib>Barnes, Erin</creatorcontrib><creatorcontrib>Kirka, Michael M.</creatorcontrib><creatorcontrib>Paquit, Vincent C.</creatorcontrib><creatorcontrib>Nandwana, Peeyush</creatorcontrib><creatorcontrib>Plotkowski, Alex J.</creatorcontrib><creatorcontrib>Dehoff, Ryan R.</creatorcontrib><creatorcontrib>Babu, Sudarsanam Suresh</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Characterization of topology optimized Ti-6Al-4V components using electron beam powder bed fusion</title><title>Additive manufacturing</title><description>The use of manufacturing to generate topology optimized components shows promise for designers. However, designers who assume that additive manufacturing follows traditional manufacturing techniques may be misled due to the nuances in specific techniques. Since commercial topology optimization software tools are neither designed to consider orientation of the parts nor large variations in properties, the goal of this research is to evaluate the limitations of an existing commercial topology optimization software (i.e. Inspire®) using electron beam powder bed fusion (i.e. Arcam®) to produce optimized Ti-6Al-4V alloy components. Emerging qualification tools from Oak Ridge National Laboratory including in-situ near-infrared imaging and log file data analysis were used to rationalize the final performance of components. While the weight savings of each optimized part exceeded the initial criteria, the failure loads and locations proved instrumental in providing insight to additive manufacturing with topology optimization. In conclusion, this research has shown the need for a comprehensive understanding of correlations between geometry, additive manufacturing processing conditions, defect generation, and microstructure for characterization of complex components such as those designed by topology optimization.</description><subject>Additive manufacturing</subject><subject>Electron beam powder bed fusion</subject><subject>ENGINEERING</subject><subject>Ti64</subject><subject>Topology optimization</subject><issn>2214-8604</issn><issn>2214-7810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNjM0KgkAUhYcoSMp3uLQXxv9pGVL0ANJWpvGqEzpXnInIp8-FD9DqfHC-czbMi6IwCXIR8u3KIuPJnvnWvjjnYRrnZxF5TBadnKRyOOlZOk0GqAFHI_XUfoFGpwc9Yw2lDrJLHyQPUDSMZNA4C2-rTQvYo3LTsnyiHGCkT43TwjU0S0_myHaN7C36ax7Y6XYti3tA1unKKu1QdYqMWV6qMElFLHj8l_QDgnxHUQ</recordid><startdate>20171206</startdate><enddate>20171206</enddate><creator>Yoder, Sean L.</creator><creator>Morgan, Shawn</creator><creator>Kinzy, Corinne</creator><creator>Barnes, Erin</creator><creator>Kirka, Michael M.</creator><creator>Paquit, Vincent C.</creator><creator>Nandwana, Peeyush</creator><creator>Plotkowski, Alex J.</creator><creator>Dehoff, Ryan R.</creator><creator>Babu, Sudarsanam Suresh</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000227758044</orcidid><orcidid>https://orcid.org/0000000249791240</orcidid><orcidid>https://orcid.org/0000000251471668</orcidid><orcidid>https://orcid.org/0000000194569633</orcidid><orcidid>https://orcid.org/0000000303312598</orcidid></search><sort><creationdate>20171206</creationdate><title>Characterization of topology optimized Ti-6Al-4V components using electron beam powder bed fusion</title><author>Yoder, Sean L. ; Morgan, Shawn ; Kinzy, Corinne ; Barnes, Erin ; Kirka, Michael M. ; Paquit, Vincent C. ; Nandwana, Peeyush ; Plotkowski, Alex J. ; Dehoff, Ryan R. ; Babu, Sudarsanam Suresh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_14583803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Additive manufacturing</topic><topic>Electron beam powder bed fusion</topic><topic>ENGINEERING</topic><topic>Ti64</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoder, Sean L.</creatorcontrib><creatorcontrib>Morgan, Shawn</creatorcontrib><creatorcontrib>Kinzy, Corinne</creatorcontrib><creatorcontrib>Barnes, Erin</creatorcontrib><creatorcontrib>Kirka, Michael M.</creatorcontrib><creatorcontrib>Paquit, Vincent C.</creatorcontrib><creatorcontrib>Nandwana, Peeyush</creatorcontrib><creatorcontrib>Plotkowski, Alex J.</creatorcontrib><creatorcontrib>Dehoff, Ryan R.</creatorcontrib><creatorcontrib>Babu, Sudarsanam Suresh</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Additive manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoder, Sean L.</au><au>Morgan, Shawn</au><au>Kinzy, Corinne</au><au>Barnes, Erin</au><au>Kirka, Michael M.</au><au>Paquit, Vincent C.</au><au>Nandwana, Peeyush</au><au>Plotkowski, Alex J.</au><au>Dehoff, Ryan R.</au><au>Babu, Sudarsanam Suresh</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of topology optimized Ti-6Al-4V components using electron beam powder bed fusion</atitle><jtitle>Additive manufacturing</jtitle><date>2017-12-06</date><risdate>2017</risdate><volume>19</volume><issue>C</issue><issn>2214-8604</issn><eissn>2214-7810</eissn><abstract>The use of manufacturing to generate topology optimized components shows promise for designers. However, designers who assume that additive manufacturing follows traditional manufacturing techniques may be misled due to the nuances in specific techniques. Since commercial topology optimization software tools are neither designed to consider orientation of the parts nor large variations in properties, the goal of this research is to evaluate the limitations of an existing commercial topology optimization software (i.e. Inspire®) using electron beam powder bed fusion (i.e. Arcam®) to produce optimized Ti-6Al-4V alloy components. Emerging qualification tools from Oak Ridge National Laboratory including in-situ near-infrared imaging and log file data analysis were used to rationalize the final performance of components. While the weight savings of each optimized part exceeded the initial criteria, the failure loads and locations proved instrumental in providing insight to additive manufacturing with topology optimization. In conclusion, this research has shown the need for a comprehensive understanding of correlations between geometry, additive manufacturing processing conditions, defect generation, and microstructure for characterization of complex components such as those designed by topology optimization.</abstract><cop>United States</cop><pub>Elsevier</pub><orcidid>https://orcid.org/0000000227758044</orcidid><orcidid>https://orcid.org/0000000249791240</orcidid><orcidid>https://orcid.org/0000000251471668</orcidid><orcidid>https://orcid.org/0000000194569633</orcidid><orcidid>https://orcid.org/0000000303312598</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2214-8604 |
ispartof | Additive manufacturing, 2017-12, Vol.19 (C) |
issn | 2214-8604 2214-7810 |
language | eng |
recordid | cdi_osti_scitechconnect_1458380 |
source | Alma/SFX Local Collection |
subjects | Additive manufacturing Electron beam powder bed fusion ENGINEERING Ti64 Topology optimization |
title | Characterization of topology optimized Ti-6Al-4V components using electron beam powder bed fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20topology%20optimized%20Ti-6Al-4V%20components%20using%20electron%20beam%20powder%20bed%20fusion&rft.jtitle=Additive%20manufacturing&rft.au=Yoder,%20Sean%20L.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2017-12-06&rft.volume=19&rft.issue=C&rft.issn=2214-8604&rft.eissn=2214-7810&rft_id=info:doi/&rft_dat=%3Costi%3E1458380%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |