Plasmon 3D Electron Tomography and Local Electric-Field Enhancement of Engineered Plasmonic Nanoantennas
Plasmonic nanoantennas are pushing the limits of optical imaging resolution capabilities in near-field scanning optical microscopy (NSOM). Accordingly, these techniques are driving the basic understanding of photonic and optoelectronic nanoscale devices with applications in sensing, energy conversio...
Gespeichert in:
Veröffentlicht in: | ACS photonics 2018-07, Vol.5 (7), p.2834-2842 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2842 |
---|---|
container_issue | 7 |
container_start_page | 2834 |
container_title | ACS photonics |
container_volume | 5 |
creator | Archanjo, B. S Vasconcelos, T. L Oliveira, B. S Song, C Allen, F. I Achete, C. A Ercius, P |
description | Plasmonic nanoantennas are pushing the limits of optical imaging resolution capabilities in near-field scanning optical microscopy (NSOM). Accordingly, these techniques are driving the basic understanding of photonic and optoelectronic nanoscale devices with applications in sensing, energy conversion, solid-state lighting, and information technology. Imaging the localized surface plasmon resonance (LSPR) at the nanoscale is a key to understanding the optical responses of a given tip geometry in order to engineer better plasmonic nanoantennas for near-field experiments. In recent years the advancement of focused ion beam technology provides the ability to directly modify plasmonic structures with nanometer resolution. Also, scanning transmission electron microscopy (STEM) with electron energy loss spectroscopy (EELS) is an established technique allowing imaging of LSPR. Specifically, the combination of these two techniques provides spectrally sensitive two-dimensional (2D) image information to better visualize and understand LSPR on the nanometer scale. This can be combined with electron tomography to provide the three-dimensional LSPR distribution. Here we demonstrate the fabrication of Au nanopyramids using helium ion microscopy, and analyze the LSPR in 3D reconstructions produced by total variation (TV)-norm minimization of a set of 2D STEM-EELS maps. Additionally, a boundary element simulation method was used to verify the experimentally observed nanopyramid LSPR modes. Finally, we show that the point-spread-functions (PSF) of LSPR mode hot spots in nanopyramids differ to local electric-field enhancement under optical excitation making direct comparison to NSOM experimental resolution difficult. However, the STEM-EELS results show how LSPR modes are influenced by the tip characteristics, which can inform the development of new nanoantenna designs. |
doi_str_mv | 10.1021/acsphotonics.8b00125 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1456994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d72900254</sourcerecordid><originalsourceid>FETCH-LOGICAL-a365t-fb40e694307a75a18e03a41e9c497d317958f56d015f7ae6a8d942d114a6bd373</originalsourceid><addsrcrecordid>eNp9ULtOwzAUtRBIVKV_wGCxp9jxI8mISnlIFTCU2bq1ncZVYld2GPr3GDVDJ6Z7rs5D9x6E7ilZUlLSR9Dp2IUxeKfTst4RQktxhWYlY6TgpCyvL_AtWqR0IFlDBJOSz1D31UMagsfsGa97q8eY8TYMYR_h2J0weIM3QUM_sU4XL872Bq99B17bwfoRhzave-etjdbgKdFp_AE-gB-t95Du0E0LfbKLac7R98t6u3orNp-v76unTQFMirFod5xY2XBGKqgE0NoSBpzaRvOmMoxWjahbIQ2hoq3ASqhNw0tDKQe5M6xic_Rwzg1pdCppN1rd6eB9vl5RLmSTw-eIn0U6hpSibdUxugHiSVGi_lpVl62qqdVsI2dbZtUh_ESfP_nf8gs3_n84</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Plasmon 3D Electron Tomography and Local Electric-Field Enhancement of Engineered Plasmonic Nanoantennas</title><source>American Chemical Society Journals</source><creator>Archanjo, B. S ; Vasconcelos, T. L ; Oliveira, B. S ; Song, C ; Allen, F. I ; Achete, C. A ; Ercius, P</creator><creatorcontrib>Archanjo, B. S ; Vasconcelos, T. L ; Oliveira, B. S ; Song, C ; Allen, F. I ; Achete, C. A ; Ercius, P ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Plasmonic nanoantennas are pushing the limits of optical imaging resolution capabilities in near-field scanning optical microscopy (NSOM). Accordingly, these techniques are driving the basic understanding of photonic and optoelectronic nanoscale devices with applications in sensing, energy conversion, solid-state lighting, and information technology. Imaging the localized surface plasmon resonance (LSPR) at the nanoscale is a key to understanding the optical responses of a given tip geometry in order to engineer better plasmonic nanoantennas for near-field experiments. In recent years the advancement of focused ion beam technology provides the ability to directly modify plasmonic structures with nanometer resolution. Also, scanning transmission electron microscopy (STEM) with electron energy loss spectroscopy (EELS) is an established technique allowing imaging of LSPR. Specifically, the combination of these two techniques provides spectrally sensitive two-dimensional (2D) image information to better visualize and understand LSPR on the nanometer scale. This can be combined with electron tomography to provide the three-dimensional LSPR distribution. Here we demonstrate the fabrication of Au nanopyramids using helium ion microscopy, and analyze the LSPR in 3D reconstructions produced by total variation (TV)-norm minimization of a set of 2D STEM-EELS maps. Additionally, a boundary element simulation method was used to verify the experimentally observed nanopyramid LSPR modes. Finally, we show that the point-spread-functions (PSF) of LSPR mode hot spots in nanopyramids differ to local electric-field enhancement under optical excitation making direct comparison to NSOM experimental resolution difficult. However, the STEM-EELS results show how LSPR modes are influenced by the tip characteristics, which can inform the development of new nanoantenna designs.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.8b00125</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>EELS ; nanoantennas ; nanofabrication ; NANOSCIENCE AND NANOTECHNOLOGY ; NSOM ; surface plasmon ; tomography</subject><ispartof>ACS photonics, 2018-07, Vol.5 (7), p.2834-2842</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a365t-fb40e694307a75a18e03a41e9c497d317958f56d015f7ae6a8d942d114a6bd373</citedby><cites>FETCH-LOGICAL-a365t-fb40e694307a75a18e03a41e9c497d317958f56d015f7ae6a8d942d114a6bd373</cites><orcidid>0000-0001-8145-7712 ; 0000000181457712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsphotonics.8b00125$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsphotonics.8b00125$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1456994$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Archanjo, B. S</creatorcontrib><creatorcontrib>Vasconcelos, T. L</creatorcontrib><creatorcontrib>Oliveira, B. S</creatorcontrib><creatorcontrib>Song, C</creatorcontrib><creatorcontrib>Allen, F. I</creatorcontrib><creatorcontrib>Achete, C. A</creatorcontrib><creatorcontrib>Ercius, P</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Plasmon 3D Electron Tomography and Local Electric-Field Enhancement of Engineered Plasmonic Nanoantennas</title><title>ACS photonics</title><addtitle>ACS Photonics</addtitle><description>Plasmonic nanoantennas are pushing the limits of optical imaging resolution capabilities in near-field scanning optical microscopy (NSOM). Accordingly, these techniques are driving the basic understanding of photonic and optoelectronic nanoscale devices with applications in sensing, energy conversion, solid-state lighting, and information technology. Imaging the localized surface plasmon resonance (LSPR) at the nanoscale is a key to understanding the optical responses of a given tip geometry in order to engineer better plasmonic nanoantennas for near-field experiments. In recent years the advancement of focused ion beam technology provides the ability to directly modify plasmonic structures with nanometer resolution. Also, scanning transmission electron microscopy (STEM) with electron energy loss spectroscopy (EELS) is an established technique allowing imaging of LSPR. Specifically, the combination of these two techniques provides spectrally sensitive two-dimensional (2D) image information to better visualize and understand LSPR on the nanometer scale. This can be combined with electron tomography to provide the three-dimensional LSPR distribution. Here we demonstrate the fabrication of Au nanopyramids using helium ion microscopy, and analyze the LSPR in 3D reconstructions produced by total variation (TV)-norm minimization of a set of 2D STEM-EELS maps. Additionally, a boundary element simulation method was used to verify the experimentally observed nanopyramid LSPR modes. Finally, we show that the point-spread-functions (PSF) of LSPR mode hot spots in nanopyramids differ to local electric-field enhancement under optical excitation making direct comparison to NSOM experimental resolution difficult. However, the STEM-EELS results show how LSPR modes are influenced by the tip characteristics, which can inform the development of new nanoantenna designs.</description><subject>EELS</subject><subject>nanoantennas</subject><subject>nanofabrication</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NSOM</subject><subject>surface plasmon</subject><subject>tomography</subject><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9ULtOwzAUtRBIVKV_wGCxp9jxI8mISnlIFTCU2bq1ncZVYld2GPr3GDVDJ6Z7rs5D9x6E7ilZUlLSR9Dp2IUxeKfTst4RQktxhWYlY6TgpCyvL_AtWqR0IFlDBJOSz1D31UMagsfsGa97q8eY8TYMYR_h2J0weIM3QUM_sU4XL872Bq99B17bwfoRhzave-etjdbgKdFp_AE-gB-t95Du0E0LfbKLac7R98t6u3orNp-v76unTQFMirFod5xY2XBGKqgE0NoSBpzaRvOmMoxWjahbIQ2hoq3ASqhNw0tDKQe5M6xic_Rwzg1pdCppN1rd6eB9vl5RLmSTw-eIn0U6hpSibdUxugHiSVGi_lpVl62qqdVsI2dbZtUh_ESfP_nf8gs3_n84</recordid><startdate>20180718</startdate><enddate>20180718</enddate><creator>Archanjo, B. S</creator><creator>Vasconcelos, T. L</creator><creator>Oliveira, B. S</creator><creator>Song, C</creator><creator>Allen, F. I</creator><creator>Achete, C. A</creator><creator>Ercius, P</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8145-7712</orcidid><orcidid>https://orcid.org/0000000181457712</orcidid></search><sort><creationdate>20180718</creationdate><title>Plasmon 3D Electron Tomography and Local Electric-Field Enhancement of Engineered Plasmonic Nanoantennas</title><author>Archanjo, B. S ; Vasconcelos, T. L ; Oliveira, B. S ; Song, C ; Allen, F. I ; Achete, C. A ; Ercius, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a365t-fb40e694307a75a18e03a41e9c497d317958f56d015f7ae6a8d942d114a6bd373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>EELS</topic><topic>nanoantennas</topic><topic>nanofabrication</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NSOM</topic><topic>surface plasmon</topic><topic>tomography</topic><toplevel>online_resources</toplevel><creatorcontrib>Archanjo, B. S</creatorcontrib><creatorcontrib>Vasconcelos, T. L</creatorcontrib><creatorcontrib>Oliveira, B. S</creatorcontrib><creatorcontrib>Song, C</creatorcontrib><creatorcontrib>Allen, F. I</creatorcontrib><creatorcontrib>Achete, C. A</creatorcontrib><creatorcontrib>Ercius, P</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Archanjo, B. S</au><au>Vasconcelos, T. L</au><au>Oliveira, B. S</au><au>Song, C</au><au>Allen, F. I</au><au>Achete, C. A</au><au>Ercius, P</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmon 3D Electron Tomography and Local Electric-Field Enhancement of Engineered Plasmonic Nanoantennas</atitle><jtitle>ACS photonics</jtitle><addtitle>ACS Photonics</addtitle><date>2018-07-18</date><risdate>2018</risdate><volume>5</volume><issue>7</issue><spage>2834</spage><epage>2842</epage><pages>2834-2842</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>Plasmonic nanoantennas are pushing the limits of optical imaging resolution capabilities in near-field scanning optical microscopy (NSOM). Accordingly, these techniques are driving the basic understanding of photonic and optoelectronic nanoscale devices with applications in sensing, energy conversion, solid-state lighting, and information technology. Imaging the localized surface plasmon resonance (LSPR) at the nanoscale is a key to understanding the optical responses of a given tip geometry in order to engineer better plasmonic nanoantennas for near-field experiments. In recent years the advancement of focused ion beam technology provides the ability to directly modify plasmonic structures with nanometer resolution. Also, scanning transmission electron microscopy (STEM) with electron energy loss spectroscopy (EELS) is an established technique allowing imaging of LSPR. Specifically, the combination of these two techniques provides spectrally sensitive two-dimensional (2D) image information to better visualize and understand LSPR on the nanometer scale. This can be combined with electron tomography to provide the three-dimensional LSPR distribution. Here we demonstrate the fabrication of Au nanopyramids using helium ion microscopy, and analyze the LSPR in 3D reconstructions produced by total variation (TV)-norm minimization of a set of 2D STEM-EELS maps. Additionally, a boundary element simulation method was used to verify the experimentally observed nanopyramid LSPR modes. Finally, we show that the point-spread-functions (PSF) of LSPR mode hot spots in nanopyramids differ to local electric-field enhancement under optical excitation making direct comparison to NSOM experimental resolution difficult. However, the STEM-EELS results show how LSPR modes are influenced by the tip characteristics, which can inform the development of new nanoantenna designs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsphotonics.8b00125</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8145-7712</orcidid><orcidid>https://orcid.org/0000000181457712</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2330-4022 |
ispartof | ACS photonics, 2018-07, Vol.5 (7), p.2834-2842 |
issn | 2330-4022 2330-4022 |
language | eng |
recordid | cdi_osti_scitechconnect_1456994 |
source | American Chemical Society Journals |
subjects | EELS nanoantennas nanofabrication NANOSCIENCE AND NANOTECHNOLOGY NSOM surface plasmon tomography |
title | Plasmon 3D Electron Tomography and Local Electric-Field Enhancement of Engineered Plasmonic Nanoantennas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A23%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmon%203D%20Electron%20Tomography%20and%20Local%20Electric-Field%20Enhancement%20of%20Engineered%20Plasmonic%20Nanoantennas&rft.jtitle=ACS%20photonics&rft.au=Archanjo,%20B.%20S&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2018-07-18&rft.volume=5&rft.issue=7&rft.spage=2834&rft.epage=2842&rft.pages=2834-2842&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.8b00125&rft_dat=%3Cacs_osti_%3Ed72900254%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |