Exploring Chemistry in Microcompartments Using Guided Droplet Collisions in a Branched Quadrupole Trap Coupled to a Single Droplet, Paper Spray Mass Spectrometer

Recent studies suggest that reactions in aqueous microcompartments can occur at significantly different rates than those in the bulk. Most studies have used electrospray to generate a polydisperse source of highly charged microdroplets, leading to multiple confounding factors potentially influencing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2017-11, Vol.89 (22), p.12511-12519
Hauptverfasser: Jacobs, Michael I, Davies, James F, Lee, Lance, Davis, Ryan D, Houle, Frances, Wilson, Kevin R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12519
container_issue 22
container_start_page 12511
container_title Analytical chemistry (Washington)
container_volume 89
creator Jacobs, Michael I
Davies, James F
Lee, Lance
Davis, Ryan D
Houle, Frances
Wilson, Kevin R
description Recent studies suggest that reactions in aqueous microcompartments can occur at significantly different rates than those in the bulk. Most studies have used electrospray to generate a polydisperse source of highly charged microdroplets, leading to multiple confounding factors potentially influencing reaction rates (e.g., evaporation, charge, and size). Thus, the underlying mechanism for the observed enhancement remains unclear. We present a new type of electrodynamic balancethe branched quadrupole trap (BQT)which can be used to study reactions in microdroplets in a controlled environment. The BQT allows for condensed phase chemical reactions to be initiated by colliding droplets with different reactants and levitating the merged droplet indefinitely. The performance of the BQT is characterized in several ways. Sub-millisecond mixing times as fast as ∼400 μs are measured for low velocity (∼0.1 m/s) collisions of droplets with
doi_str_mv 10.1021/acs.analchem.7b03704
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1456984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1954067327</sourcerecordid><originalsourceid>FETCH-LOGICAL-a552t-aad618657b17a0ab07ea3513d024931f28661c6dfffca1b77b80d17127e296a23</originalsourceid><addsrcrecordid>eNp9kcFu1DAURS0EokPhDxCyYMOCDM9OYidLGEpBagWo7dp6sR3qKomD7UjM5_CnOJopSCxY2ZLPvX56h5DnDLYMOHuLOm5xwkHf2nErOyglVA_IhtUcCtE0_CHZAEBZcAlwQp7EeAfAGDDxmJzwFqqmkfWG_Dr7OQ8-uOk73eUiF1PYUzfRS6eD136cMaTRTinSm7hC54sz1tAPwc-DTXTnh8FF56e4hpC-DzjlgQz9tqAJy-wHS68DzhlccsDQ5DN1lZvyw7HkDf2Ksw30ag64p5cYY75anYIfbbLhKXnU4xDts-N5Sm4-nl3vPhUXX84_795dFFjXPBWIRrBG1LJjEgE7kBbLmpUGeNWWrOeNEEwL0_e9RtZJ2TVgmGRcWt4K5OUpeXno9TE5FbVLVt9qP015FMWqWrRNlaHXB2gO_sdiY1J5ZdoOA07WL1Gxtq5AyJLLjL76B73zS8jCVqrhTFatrDNVHai87hiD7dUc3Ihhrxio1bPKntW9Z3X0nGMvjuVLN1rzJ3QvNgNwANb434__1_kbw6y4hQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1982174975</pqid></control><display><type>article</type><title>Exploring Chemistry in Microcompartments Using Guided Droplet Collisions in a Branched Quadrupole Trap Coupled to a Single Droplet, Paper Spray Mass Spectrometer</title><source>ACS Publications</source><creator>Jacobs, Michael I ; Davies, James F ; Lee, Lance ; Davis, Ryan D ; Houle, Frances ; Wilson, Kevin R</creator><creatorcontrib>Jacobs, Michael I ; Davies, James F ; Lee, Lance ; Davis, Ryan D ; Houle, Frances ; Wilson, Kevin R ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Recent studies suggest that reactions in aqueous microcompartments can occur at significantly different rates than those in the bulk. Most studies have used electrospray to generate a polydisperse source of highly charged microdroplets, leading to multiple confounding factors potentially influencing reaction rates (e.g., evaporation, charge, and size). Thus, the underlying mechanism for the observed enhancement remains unclear. We present a new type of electrodynamic balancethe branched quadrupole trap (BQT)which can be used to study reactions in microdroplets in a controlled environment. The BQT allows for condensed phase chemical reactions to be initiated by colliding droplets with different reactants and levitating the merged droplet indefinitely. The performance of the BQT is characterized in several ways. Sub-millisecond mixing times as fast as ∼400 μs are measured for low velocity (∼0.1 m/s) collisions of droplets with &lt;40 μm diameters. The reaction of o-phthalaldehyde (OPA) with alanine in the presence of dithiolthreitol is measured using both fluorescence spectroscopy and single droplet paper spray mass spectrometry. The bimolecular rate constant for reaction of alanine with OPA is found to be 84 ± 10 and 67 ± 6 M–1 s–1 in a 30 μm radius droplet and bulk solution, respectively, which demonstrates that bimolecular reaction rate coefficients can be quantified using merged microdroplets and that merged droplets can be used to study rate enhancements due to compartmentalization. Products of the reaction of OPA with alanine are detected in single droplets using paper spray mass spectrometry. We demonstrate that single droplets with &lt;100 pg of analyte can easily be studied using single droplet mass spectrometry.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.7b03704</identifier><identifier>PMID: 29048875</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alanine ; Chemical reactions ; Chemistry ; Collisions ; Droplets ; Evaporation ; Evaporation rate ; Fluorescence ; Fluorescence spectroscopy ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Mass spectrometry ; Mass spectroscopy ; Organic chemistry ; Quadrupoles</subject><ispartof>Analytical chemistry (Washington), 2017-11, Vol.89 (22), p.12511-12519</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 21, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a552t-aad618657b17a0ab07ea3513d024931f28661c6dfffca1b77b80d17127e296a23</citedby><cites>FETCH-LOGICAL-a552t-aad618657b17a0ab07ea3513d024931f28661c6dfffca1b77b80d17127e296a23</cites><orcidid>0000-0002-4434-1320 ; 0000-0003-3682-0409 ; 0000-0003-0264-0872 ; 0000-0001-5571-2548 ; 0000000302640872 ; 0000000155712548 ; 0000000336820409 ; 0000000244341320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.7b03704$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.7b03704$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29048875$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1456984$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacobs, Michael I</creatorcontrib><creatorcontrib>Davies, James F</creatorcontrib><creatorcontrib>Lee, Lance</creatorcontrib><creatorcontrib>Davis, Ryan D</creatorcontrib><creatorcontrib>Houle, Frances</creatorcontrib><creatorcontrib>Wilson, Kevin R</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Exploring Chemistry in Microcompartments Using Guided Droplet Collisions in a Branched Quadrupole Trap Coupled to a Single Droplet, Paper Spray Mass Spectrometer</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Recent studies suggest that reactions in aqueous microcompartments can occur at significantly different rates than those in the bulk. Most studies have used electrospray to generate a polydisperse source of highly charged microdroplets, leading to multiple confounding factors potentially influencing reaction rates (e.g., evaporation, charge, and size). Thus, the underlying mechanism for the observed enhancement remains unclear. We present a new type of electrodynamic balancethe branched quadrupole trap (BQT)which can be used to study reactions in microdroplets in a controlled environment. The BQT allows for condensed phase chemical reactions to be initiated by colliding droplets with different reactants and levitating the merged droplet indefinitely. The performance of the BQT is characterized in several ways. Sub-millisecond mixing times as fast as ∼400 μs are measured for low velocity (∼0.1 m/s) collisions of droplets with &lt;40 μm diameters. The reaction of o-phthalaldehyde (OPA) with alanine in the presence of dithiolthreitol is measured using both fluorescence spectroscopy and single droplet paper spray mass spectrometry. The bimolecular rate constant for reaction of alanine with OPA is found to be 84 ± 10 and 67 ± 6 M–1 s–1 in a 30 μm radius droplet and bulk solution, respectively, which demonstrates that bimolecular reaction rate coefficients can be quantified using merged microdroplets and that merged droplets can be used to study rate enhancements due to compartmentalization. Products of the reaction of OPA with alanine are detected in single droplets using paper spray mass spectrometry. We demonstrate that single droplets with &lt;100 pg of analyte can easily be studied using single droplet mass spectrometry.</description><subject>Alanine</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Collisions</subject><subject>Droplets</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Fluorescence</subject><subject>Fluorescence spectroscopy</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Organic chemistry</subject><subject>Quadrupoles</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAURS0EokPhDxCyYMOCDM9OYidLGEpBagWo7dp6sR3qKomD7UjM5_CnOJopSCxY2ZLPvX56h5DnDLYMOHuLOm5xwkHf2nErOyglVA_IhtUcCtE0_CHZAEBZcAlwQp7EeAfAGDDxmJzwFqqmkfWG_Dr7OQ8-uOk73eUiF1PYUzfRS6eD136cMaTRTinSm7hC54sz1tAPwc-DTXTnh8FF56e4hpC-DzjlgQz9tqAJy-wHS68DzhlccsDQ5DN1lZvyw7HkDf2Ksw30ag64p5cYY75anYIfbbLhKXnU4xDts-N5Sm4-nl3vPhUXX84_795dFFjXPBWIRrBG1LJjEgE7kBbLmpUGeNWWrOeNEEwL0_e9RtZJ2TVgmGRcWt4K5OUpeXno9TE5FbVLVt9qP015FMWqWrRNlaHXB2gO_sdiY1J5ZdoOA07WL1Gxtq5AyJLLjL76B73zS8jCVqrhTFatrDNVHai87hiD7dUc3Ihhrxio1bPKntW9Z3X0nGMvjuVLN1rzJ3QvNgNwANb434__1_kbw6y4hQ</recordid><startdate>20171121</startdate><enddate>20171121</enddate><creator>Jacobs, Michael I</creator><creator>Davies, James F</creator><creator>Lee, Lance</creator><creator>Davis, Ryan D</creator><creator>Houle, Frances</creator><creator>Wilson, Kevin R</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4434-1320</orcidid><orcidid>https://orcid.org/0000-0003-3682-0409</orcidid><orcidid>https://orcid.org/0000-0003-0264-0872</orcidid><orcidid>https://orcid.org/0000-0001-5571-2548</orcidid><orcidid>https://orcid.org/0000000302640872</orcidid><orcidid>https://orcid.org/0000000155712548</orcidid><orcidid>https://orcid.org/0000000336820409</orcidid><orcidid>https://orcid.org/0000000244341320</orcidid></search><sort><creationdate>20171121</creationdate><title>Exploring Chemistry in Microcompartments Using Guided Droplet Collisions in a Branched Quadrupole Trap Coupled to a Single Droplet, Paper Spray Mass Spectrometer</title><author>Jacobs, Michael I ; Davies, James F ; Lee, Lance ; Davis, Ryan D ; Houle, Frances ; Wilson, Kevin R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a552t-aad618657b17a0ab07ea3513d024931f28661c6dfffca1b77b80d17127e296a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alanine</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Collisions</topic><topic>Droplets</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Fluorescence</topic><topic>Fluorescence spectroscopy</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Organic chemistry</topic><topic>Quadrupoles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacobs, Michael I</creatorcontrib><creatorcontrib>Davies, James F</creatorcontrib><creatorcontrib>Lee, Lance</creatorcontrib><creatorcontrib>Davis, Ryan D</creatorcontrib><creatorcontrib>Houle, Frances</creatorcontrib><creatorcontrib>Wilson, Kevin R</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacobs, Michael I</au><au>Davies, James F</au><au>Lee, Lance</au><au>Davis, Ryan D</au><au>Houle, Frances</au><au>Wilson, Kevin R</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring Chemistry in Microcompartments Using Guided Droplet Collisions in a Branched Quadrupole Trap Coupled to a Single Droplet, Paper Spray Mass Spectrometer</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2017-11-21</date><risdate>2017</risdate><volume>89</volume><issue>22</issue><spage>12511</spage><epage>12519</epage><pages>12511-12519</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Recent studies suggest that reactions in aqueous microcompartments can occur at significantly different rates than those in the bulk. Most studies have used electrospray to generate a polydisperse source of highly charged microdroplets, leading to multiple confounding factors potentially influencing reaction rates (e.g., evaporation, charge, and size). Thus, the underlying mechanism for the observed enhancement remains unclear. We present a new type of electrodynamic balancethe branched quadrupole trap (BQT)which can be used to study reactions in microdroplets in a controlled environment. The BQT allows for condensed phase chemical reactions to be initiated by colliding droplets with different reactants and levitating the merged droplet indefinitely. The performance of the BQT is characterized in several ways. Sub-millisecond mixing times as fast as ∼400 μs are measured for low velocity (∼0.1 m/s) collisions of droplets with &lt;40 μm diameters. The reaction of o-phthalaldehyde (OPA) with alanine in the presence of dithiolthreitol is measured using both fluorescence spectroscopy and single droplet paper spray mass spectrometry. The bimolecular rate constant for reaction of alanine with OPA is found to be 84 ± 10 and 67 ± 6 M–1 s–1 in a 30 μm radius droplet and bulk solution, respectively, which demonstrates that bimolecular reaction rate coefficients can be quantified using merged microdroplets and that merged droplets can be used to study rate enhancements due to compartmentalization. Products of the reaction of OPA with alanine are detected in single droplets using paper spray mass spectrometry. We demonstrate that single droplets with &lt;100 pg of analyte can easily be studied using single droplet mass spectrometry.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29048875</pmid><doi>10.1021/acs.analchem.7b03704</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4434-1320</orcidid><orcidid>https://orcid.org/0000-0003-3682-0409</orcidid><orcidid>https://orcid.org/0000-0003-0264-0872</orcidid><orcidid>https://orcid.org/0000-0001-5571-2548</orcidid><orcidid>https://orcid.org/0000000302640872</orcidid><orcidid>https://orcid.org/0000000155712548</orcidid><orcidid>https://orcid.org/0000000336820409</orcidid><orcidid>https://orcid.org/0000000244341320</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2017-11, Vol.89 (22), p.12511-12519
issn 0003-2700
1520-6882
language eng
recordid cdi_osti_scitechconnect_1456984
source ACS Publications
subjects Alanine
Chemical reactions
Chemistry
Collisions
Droplets
Evaporation
Evaporation rate
Fluorescence
Fluorescence spectroscopy
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Mass spectrometry
Mass spectroscopy
Organic chemistry
Quadrupoles
title Exploring Chemistry in Microcompartments Using Guided Droplet Collisions in a Branched Quadrupole Trap Coupled to a Single Droplet, Paper Spray Mass Spectrometer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20Chemistry%20in%20Microcompartments%20Using%20Guided%20Droplet%20Collisions%20in%20a%20Branched%20Quadrupole%20Trap%20Coupled%20to%20a%20Single%20Droplet,%20Paper%20Spray%20Mass%20Spectrometer&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Jacobs,%20Michael%20I&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2017-11-21&rft.volume=89&rft.issue=22&rft.spage=12511&rft.epage=12519&rft.pages=12511-12519&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.7b03704&rft_dat=%3Cproquest_osti_%3E1954067327%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1982174975&rft_id=info:pmid/29048875&rfr_iscdi=true