Obtaining Large Columnar CdTe Grains and Long Lifetime on Nanocrystalline CdSe, MgZnO, or CdS Layers
CdTe solar cells have reached efficiencies comparable to multicrystalline silicon and produce electricity at costs competitive with traditional energy sources. Recent efficiency gains have come partly from shifting from the traditional CdS window layer to new materials such as CdSe and MgZnO, yet su...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2018-04, Vol.8 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 8 |
creator | Amarasinghe, Mahisha Colegrove, Eric Moseley, John Moutinho, Helio Albin, David Duenow, Joel Jensen, Soren Kephart, Jason Sampath, Walajabad Sivananthan, Siva Al‐Jassim, Mowafak Metzger, Wyatt K. |
description | CdTe solar cells have reached efficiencies comparable to multicrystalline silicon and produce electricity at costs competitive with traditional energy sources. Recent efficiency gains have come partly from shifting from the traditional CdS window layer to new materials such as CdSe and MgZnO, yet substantial headroom still exists to improve performance. Thin film technologies including Cu(In,Ga)Se2, perovskites, Cu2ZnSn(S,Se)4, and CdTe inherently have many grain boundaries that can form recombination centers and impede carrier transport; however, grain boundary engineering has been difficult and not practical. In this work, it is demonstrated that wide columnar grains reaching through the entire CdTe layer can be achieved by aggressive postdeposition CdTe recrystallization. This reduces the grain structure constraints imposed by nucleation on nanocrystalline window layers and enables diverse window layers to be selected for other properties critical for electro‐optical applications. Computational simulations indicate that increasing grain size from 1 to 7 µm can be equivalent to decreasing grain‐boundary recombination velocity by three orders of magnitude. Here, large high‐quality grains enable CdTe lifetimes exceeding 50 ns.
Controlling thin film grain structure is challenging and can help realize solar electricity costs below conventional sources. Here, large columnar CdTe grains are achieved by aggressive recrystallization that circumvents nucleation constraints imposed by depositing on different nanocrystalline layers. The resulting films have reduced grain boundary and bulk recombination, enabling excellent transport, and carrier lifetimes. |
doi_str_mv | 10.1002/aenm.201702666 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1456866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2025670625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4236-ded63aa9e5fbc5c894e6f413ddc47619fe245956dc4954f5a45c06fdcd0ce5eb3</originalsourceid><addsrcrecordid>eNqFkEFPAjEQhTdGEwly9dzoFbDttoU9EoJossABvHhpSjuLJUuL7RLDv7dkjR6dy8xkvvcyeVl2T_CQYEyfFLjDkGIywlQIcZV1iCBsIMYMX__OOb3NejHucSpWEJznncysto2yzrodKlXYAZr6-nRwKqCp2QCah3SMSDmDSn9hbAWNPQDyDi2V8zqcY6Pq2rqkNGvoo8Xu3a36yF8M1snzDCHeZTeVqiP0fno3e3uebaYvg3I1f51OyoFmNBcDA0bkShXAq63melwwEBUjuTGajQQpKqCMF1ykteCs4opxjUVltMEaOGzzbvbQ-vrYWBm1bUB_aO8c6EYSxsVYiAQ9ttAx-M8TxEbu_Sm49JekmHIxwoLyRA1bSgcfY4BKHoM9qHCWBMtL4vKSuPxNPAmKVvBlazj_Q8vJbLn4034DR7GDoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025670625</pqid></control><display><type>article</type><title>Obtaining Large Columnar CdTe Grains and Long Lifetime on Nanocrystalline CdSe, MgZnO, or CdS Layers</title><source>Wiley Online Library All Journals</source><creator>Amarasinghe, Mahisha ; Colegrove, Eric ; Moseley, John ; Moutinho, Helio ; Albin, David ; Duenow, Joel ; Jensen, Soren ; Kephart, Jason ; Sampath, Walajabad ; Sivananthan, Siva ; Al‐Jassim, Mowafak ; Metzger, Wyatt K.</creator><creatorcontrib>Amarasinghe, Mahisha ; Colegrove, Eric ; Moseley, John ; Moutinho, Helio ; Albin, David ; Duenow, Joel ; Jensen, Soren ; Kephart, Jason ; Sampath, Walajabad ; Sivananthan, Siva ; Al‐Jassim, Mowafak ; Metzger, Wyatt K. ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>CdTe solar cells have reached efficiencies comparable to multicrystalline silicon and produce electricity at costs competitive with traditional energy sources. Recent efficiency gains have come partly from shifting from the traditional CdS window layer to new materials such as CdSe and MgZnO, yet substantial headroom still exists to improve performance. Thin film technologies including Cu(In,Ga)Se2, perovskites, Cu2ZnSn(S,Se)4, and CdTe inherently have many grain boundaries that can form recombination centers and impede carrier transport; however, grain boundary engineering has been difficult and not practical. In this work, it is demonstrated that wide columnar grains reaching through the entire CdTe layer can be achieved by aggressive postdeposition CdTe recrystallization. This reduces the grain structure constraints imposed by nucleation on nanocrystalline window layers and enables diverse window layers to be selected for other properties critical for electro‐optical applications. Computational simulations indicate that increasing grain size from 1 to 7 µm can be equivalent to decreasing grain‐boundary recombination velocity by three orders of magnitude. Here, large high‐quality grains enable CdTe lifetimes exceeding 50 ns.
Controlling thin film grain structure is challenging and can help realize solar electricity costs below conventional sources. Here, large columnar CdTe grains are achieved by aggressive recrystallization that circumvents nucleation constraints imposed by depositing on different nanocrystalline layers. The resulting films have reduced grain boundary and bulk recombination, enabling excellent transport, and carrier lifetimes.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201702666</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cadmium selenides ; Cadmium sulfide ; Cadmium telluride ; Cadmium tellurides ; Carrier transport ; CdTe ; Computer simulation ; Electricity pricing ; Energy costs ; Grain ; Grain boundaries ; Grain structure ; Intermetallic compounds ; MATERIALS SCIENCE ; Optical properties ; Performance enhancement ; Perovskites ; Photovoltaic cells ; recombination ; Recrystallization ; Solar cells ; SOLAR ENERGY ; thin films</subject><ispartof>Advanced energy materials, 2018-04, Vol.8 (11), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4236-ded63aa9e5fbc5c894e6f413ddc47619fe245956dc4954f5a45c06fdcd0ce5eb3</citedby><cites>FETCH-LOGICAL-c4236-ded63aa9e5fbc5c894e6f413ddc47619fe245956dc4954f5a45c06fdcd0ce5eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201702666$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201702666$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1456866$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Amarasinghe, Mahisha</creatorcontrib><creatorcontrib>Colegrove, Eric</creatorcontrib><creatorcontrib>Moseley, John</creatorcontrib><creatorcontrib>Moutinho, Helio</creatorcontrib><creatorcontrib>Albin, David</creatorcontrib><creatorcontrib>Duenow, Joel</creatorcontrib><creatorcontrib>Jensen, Soren</creatorcontrib><creatorcontrib>Kephart, Jason</creatorcontrib><creatorcontrib>Sampath, Walajabad</creatorcontrib><creatorcontrib>Sivananthan, Siva</creatorcontrib><creatorcontrib>Al‐Jassim, Mowafak</creatorcontrib><creatorcontrib>Metzger, Wyatt K.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Obtaining Large Columnar CdTe Grains and Long Lifetime on Nanocrystalline CdSe, MgZnO, or CdS Layers</title><title>Advanced energy materials</title><description>CdTe solar cells have reached efficiencies comparable to multicrystalline silicon and produce electricity at costs competitive with traditional energy sources. Recent efficiency gains have come partly from shifting from the traditional CdS window layer to new materials such as CdSe and MgZnO, yet substantial headroom still exists to improve performance. Thin film technologies including Cu(In,Ga)Se2, perovskites, Cu2ZnSn(S,Se)4, and CdTe inherently have many grain boundaries that can form recombination centers and impede carrier transport; however, grain boundary engineering has been difficult and not practical. In this work, it is demonstrated that wide columnar grains reaching through the entire CdTe layer can be achieved by aggressive postdeposition CdTe recrystallization. This reduces the grain structure constraints imposed by nucleation on nanocrystalline window layers and enables diverse window layers to be selected for other properties critical for electro‐optical applications. Computational simulations indicate that increasing grain size from 1 to 7 µm can be equivalent to decreasing grain‐boundary recombination velocity by three orders of magnitude. Here, large high‐quality grains enable CdTe lifetimes exceeding 50 ns.
Controlling thin film grain structure is challenging and can help realize solar electricity costs below conventional sources. Here, large columnar CdTe grains are achieved by aggressive recrystallization that circumvents nucleation constraints imposed by depositing on different nanocrystalline layers. The resulting films have reduced grain boundary and bulk recombination, enabling excellent transport, and carrier lifetimes.</description><subject>Cadmium selenides</subject><subject>Cadmium sulfide</subject><subject>Cadmium telluride</subject><subject>Cadmium tellurides</subject><subject>Carrier transport</subject><subject>CdTe</subject><subject>Computer simulation</subject><subject>Electricity pricing</subject><subject>Energy costs</subject><subject>Grain</subject><subject>Grain boundaries</subject><subject>Grain structure</subject><subject>Intermetallic compounds</subject><subject>MATERIALS SCIENCE</subject><subject>Optical properties</subject><subject>Performance enhancement</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>recombination</subject><subject>Recrystallization</subject><subject>Solar cells</subject><subject>SOLAR ENERGY</subject><subject>thin films</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPAjEQhTdGEwly9dzoFbDttoU9EoJossABvHhpSjuLJUuL7RLDv7dkjR6dy8xkvvcyeVl2T_CQYEyfFLjDkGIywlQIcZV1iCBsIMYMX__OOb3NejHucSpWEJznncysto2yzrodKlXYAZr6-nRwKqCp2QCah3SMSDmDSn9hbAWNPQDyDi2V8zqcY6Pq2rqkNGvoo8Xu3a36yF8M1snzDCHeZTeVqiP0fno3e3uebaYvg3I1f51OyoFmNBcDA0bkShXAq63melwwEBUjuTGajQQpKqCMF1ykteCs4opxjUVltMEaOGzzbvbQ-vrYWBm1bUB_aO8c6EYSxsVYiAQ9ttAx-M8TxEbu_Sm49JekmHIxwoLyRA1bSgcfY4BKHoM9qHCWBMtL4vKSuPxNPAmKVvBlazj_Q8vJbLn4034DR7GDoA</recordid><startdate>20180416</startdate><enddate>20180416</enddate><creator>Amarasinghe, Mahisha</creator><creator>Colegrove, Eric</creator><creator>Moseley, John</creator><creator>Moutinho, Helio</creator><creator>Albin, David</creator><creator>Duenow, Joel</creator><creator>Jensen, Soren</creator><creator>Kephart, Jason</creator><creator>Sampath, Walajabad</creator><creator>Sivananthan, Siva</creator><creator>Al‐Jassim, Mowafak</creator><creator>Metzger, Wyatt K.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180416</creationdate><title>Obtaining Large Columnar CdTe Grains and Long Lifetime on Nanocrystalline CdSe, MgZnO, or CdS Layers</title><author>Amarasinghe, Mahisha ; Colegrove, Eric ; Moseley, John ; Moutinho, Helio ; Albin, David ; Duenow, Joel ; Jensen, Soren ; Kephart, Jason ; Sampath, Walajabad ; Sivananthan, Siva ; Al‐Jassim, Mowafak ; Metzger, Wyatt K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4236-ded63aa9e5fbc5c894e6f413ddc47619fe245956dc4954f5a45c06fdcd0ce5eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cadmium selenides</topic><topic>Cadmium sulfide</topic><topic>Cadmium telluride</topic><topic>Cadmium tellurides</topic><topic>Carrier transport</topic><topic>CdTe</topic><topic>Computer simulation</topic><topic>Electricity pricing</topic><topic>Energy costs</topic><topic>Grain</topic><topic>Grain boundaries</topic><topic>Grain structure</topic><topic>Intermetallic compounds</topic><topic>MATERIALS SCIENCE</topic><topic>Optical properties</topic><topic>Performance enhancement</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>recombination</topic><topic>Recrystallization</topic><topic>Solar cells</topic><topic>SOLAR ENERGY</topic><topic>thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amarasinghe, Mahisha</creatorcontrib><creatorcontrib>Colegrove, Eric</creatorcontrib><creatorcontrib>Moseley, John</creatorcontrib><creatorcontrib>Moutinho, Helio</creatorcontrib><creatorcontrib>Albin, David</creatorcontrib><creatorcontrib>Duenow, Joel</creatorcontrib><creatorcontrib>Jensen, Soren</creatorcontrib><creatorcontrib>Kephart, Jason</creatorcontrib><creatorcontrib>Sampath, Walajabad</creatorcontrib><creatorcontrib>Sivananthan, Siva</creatorcontrib><creatorcontrib>Al‐Jassim, Mowafak</creatorcontrib><creatorcontrib>Metzger, Wyatt K.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amarasinghe, Mahisha</au><au>Colegrove, Eric</au><au>Moseley, John</au><au>Moutinho, Helio</au><au>Albin, David</au><au>Duenow, Joel</au><au>Jensen, Soren</au><au>Kephart, Jason</au><au>Sampath, Walajabad</au><au>Sivananthan, Siva</au><au>Al‐Jassim, Mowafak</au><au>Metzger, Wyatt K.</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Obtaining Large Columnar CdTe Grains and Long Lifetime on Nanocrystalline CdSe, MgZnO, or CdS Layers</atitle><jtitle>Advanced energy materials</jtitle><date>2018-04-16</date><risdate>2018</risdate><volume>8</volume><issue>11</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>CdTe solar cells have reached efficiencies comparable to multicrystalline silicon and produce electricity at costs competitive with traditional energy sources. Recent efficiency gains have come partly from shifting from the traditional CdS window layer to new materials such as CdSe and MgZnO, yet substantial headroom still exists to improve performance. Thin film technologies including Cu(In,Ga)Se2, perovskites, Cu2ZnSn(S,Se)4, and CdTe inherently have many grain boundaries that can form recombination centers and impede carrier transport; however, grain boundary engineering has been difficult and not practical. In this work, it is demonstrated that wide columnar grains reaching through the entire CdTe layer can be achieved by aggressive postdeposition CdTe recrystallization. This reduces the grain structure constraints imposed by nucleation on nanocrystalline window layers and enables diverse window layers to be selected for other properties critical for electro‐optical applications. Computational simulations indicate that increasing grain size from 1 to 7 µm can be equivalent to decreasing grain‐boundary recombination velocity by three orders of magnitude. Here, large high‐quality grains enable CdTe lifetimes exceeding 50 ns.
Controlling thin film grain structure is challenging and can help realize solar electricity costs below conventional sources. Here, large columnar CdTe grains are achieved by aggressive recrystallization that circumvents nucleation constraints imposed by depositing on different nanocrystalline layers. The resulting films have reduced grain boundary and bulk recombination, enabling excellent transport, and carrier lifetimes.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201702666</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2018-04, Vol.8 (11), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_osti_scitechconnect_1456866 |
source | Wiley Online Library All Journals |
subjects | Cadmium selenides Cadmium sulfide Cadmium telluride Cadmium tellurides Carrier transport CdTe Computer simulation Electricity pricing Energy costs Grain Grain boundaries Grain structure Intermetallic compounds MATERIALS SCIENCE Optical properties Performance enhancement Perovskites Photovoltaic cells recombination Recrystallization Solar cells SOLAR ENERGY thin films |
title | Obtaining Large Columnar CdTe Grains and Long Lifetime on Nanocrystalline CdSe, MgZnO, or CdS Layers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T06%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Obtaining%20Large%20Columnar%20CdTe%20Grains%20and%20Long%20Lifetime%20on%20Nanocrystalline%20CdSe,%20MgZnO,%20or%20CdS%20Layers&rft.jtitle=Advanced%20energy%20materials&rft.au=Amarasinghe,%20Mahisha&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2018-04-16&rft.volume=8&rft.issue=11&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201702666&rft_dat=%3Cproquest_osti_%3E2025670625%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2025670625&rft_id=info:pmid/&rfr_iscdi=true |