Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries

Advanced composite electrodes containing multiple active components are often used in lithium-ion batteries for practical applications. The performance of such heterogeneous composite electrodes can in principle be enhanced by tailoring the concurrent reaction dynamics in multiple active components...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2018-01, Vol.11 (3), p.669-681
Hauptverfasser: Zhang, Qiaobao, Chen, Huixin, Luo, Langli, Zhao, Bote, Luo, Hao, Han, Xiang, Wang, Jiangwei, Wang, Chongmin, Yang, Yong, Zhu, Ting, Liu, Meilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 681
container_issue 3
container_start_page 669
container_title Energy & environmental science
container_volume 11
creator Zhang, Qiaobao
Chen, Huixin
Luo, Langli
Zhao, Bote
Luo, Hao
Han, Xiang
Wang, Jiangwei
Wang, Chongmin
Yang, Yong
Zhu, Ting
Liu, Meilin
description Advanced composite electrodes containing multiple active components are often used in lithium-ion batteries for practical applications. The performance of such heterogeneous composite electrodes can in principle be enhanced by tailoring the concurrent reaction dynamics in multiple active components for promoting their collective beneficial effects. However, the potential of this design principle has remained uncharted to date. Here we develop a composite anode of Cu/Si/Ge nanowire arrays, where each nanowire consists of a core of Cu segments and a Si/Ge bilayer shell. This unique electrode architecture exhibited a markedly improved electrochemical performance over the reference Cu/Si systems, demonstrating a stable capacity retention (81% after 3000 cycles at 2C) and doubled specific capacity at a rate of 16C (1C = 2 A g −1 ). By using in situ transmission electron microscopy and electrochemical testing, we unravel a novel reaction mechanism of dynamic co-lithiation/co-delithiation in the active Si and Ge bilayer, which is shown to effectively alleviate the electrochemically induced mechanical degradation and thus greatly enhance the long-cycle stability of the electrode. Our findings offer insights into a rational design of high-performance lithium-ion batteries via exploiting the concurrent reaction dynamics in the multiple active components of composite electrodes. A composite anode of Cu/Si/Ge nanowire arrays grown on a porous Ni foam enables the outstanding capacity, rate capability and cycle stability of Li-ion batteries.
doi_str_mv 10.1039/c8ee00239h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_osti_scitechconnect_1455309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2013628769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-fe67ff13428bd869467984d866a3a829574fbb6e6a56735b5777475e36b1b2b73</originalsourceid><addsrcrecordid>eNpFkd1LwzAUxYsoOKcvvgtB34Rq0jQffZQxN2Hgg_oc0ux2zVjTLUmF_fe21o-nezj8ONx7bpJcE_xAMC0ejQTAOKNFfZJMiGB5ygTmp7-aF9l5chHCFmOeYVFMksNSewchWLdBsQZkWmc678FF5EGbaFuH1kenG2sCsg4N1iegN4u0W6MFoNj2Xm2hN2u7qdEefNX6RjsDaGdjbbsmHUJKHSN4C-EyOav0LsDVz5wmH8_z99kyXb0uXmZPq9RQKWNaARdVRWieyXIteZFzUci8V1xTLbOCibwqSw5cMy4oK5kQIhcMKC9JmZWCTpPbMbcN0apgbART9-c5MFGRnDGKix66G6G9bw8dhKi2beddv5fKMKE8k4IP1P1IGd-G4KFSe28b7Y-KYDX0rmZyPv_ufdnDNyPsg_nj_v9CvwDvpH8W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2013628769</pqid></control><display><type>article</type><title>Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries</title><source>Royal Society Of Chemistry Journals</source><creator>Zhang, Qiaobao ; Chen, Huixin ; Luo, Langli ; Zhao, Bote ; Luo, Hao ; Han, Xiang ; Wang, Jiangwei ; Wang, Chongmin ; Yang, Yong ; Zhu, Ting ; Liu, Meilin</creator><creatorcontrib>Zhang, Qiaobao ; Chen, Huixin ; Luo, Langli ; Zhao, Bote ; Luo, Hao ; Han, Xiang ; Wang, Jiangwei ; Wang, Chongmin ; Yang, Yong ; Zhu, Ting ; Liu, Meilin ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Advanced composite electrodes containing multiple active components are often used in lithium-ion batteries for practical applications. The performance of such heterogeneous composite electrodes can in principle be enhanced by tailoring the concurrent reaction dynamics in multiple active components for promoting their collective beneficial effects. However, the potential of this design principle has remained uncharted to date. Here we develop a composite anode of Cu/Si/Ge nanowire arrays, where each nanowire consists of a core of Cu segments and a Si/Ge bilayer shell. This unique electrode architecture exhibited a markedly improved electrochemical performance over the reference Cu/Si systems, demonstrating a stable capacity retention (81% after 3000 cycles at 2C) and doubled specific capacity at a rate of 16C (1C = 2 A g −1 ). By using in situ transmission electron microscopy and electrochemical testing, we unravel a novel reaction mechanism of dynamic co-lithiation/co-delithiation in the active Si and Ge bilayer, which is shown to effectively alleviate the electrochemically induced mechanical degradation and thus greatly enhance the long-cycle stability of the electrode. Our findings offer insights into a rational design of high-performance lithium-ion batteries via exploiting the concurrent reaction dynamics in the multiple active components of composite electrodes. A composite anode of Cu/Si/Ge nanowire arrays grown on a porous Ni foam enables the outstanding capacity, rate capability and cycle stability of Li-ion batteries.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c8ee00239h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Electrochemical analysis ; Electrochemistry ; Electrodes ; Electron microscopy ; Environmental Molecular Sciences Laboratory ; Germanium ; Lithium ; Lithium-ion batteries ; Nanotechnology ; Nanowires ; Reaction mechanisms ; Rechargeable batteries ; Silicon ; Specific capacity ; Transmission electron microscopy</subject><ispartof>Energy &amp; environmental science, 2018-01, Vol.11 (3), p.669-681</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-fe67ff13428bd869467984d866a3a829574fbb6e6a56735b5777475e36b1b2b73</citedby><cites>FETCH-LOGICAL-c388t-fe67ff13428bd869467984d866a3a829574fbb6e6a56735b5777475e36b1b2b73</cites><orcidid>0000-0003-1236-6862 ; 0000-0002-6188-2372 ; 0000000312366862 ; 0000000261882372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1455309$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Qiaobao</creatorcontrib><creatorcontrib>Chen, Huixin</creatorcontrib><creatorcontrib>Luo, Langli</creatorcontrib><creatorcontrib>Zhao, Bote</creatorcontrib><creatorcontrib>Luo, Hao</creatorcontrib><creatorcontrib>Han, Xiang</creatorcontrib><creatorcontrib>Wang, Jiangwei</creatorcontrib><creatorcontrib>Wang, Chongmin</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Zhu, Ting</creatorcontrib><creatorcontrib>Liu, Meilin</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries</title><title>Energy &amp; environmental science</title><description>Advanced composite electrodes containing multiple active components are often used in lithium-ion batteries for practical applications. The performance of such heterogeneous composite electrodes can in principle be enhanced by tailoring the concurrent reaction dynamics in multiple active components for promoting their collective beneficial effects. However, the potential of this design principle has remained uncharted to date. Here we develop a composite anode of Cu/Si/Ge nanowire arrays, where each nanowire consists of a core of Cu segments and a Si/Ge bilayer shell. This unique electrode architecture exhibited a markedly improved electrochemical performance over the reference Cu/Si systems, demonstrating a stable capacity retention (81% after 3000 cycles at 2C) and doubled specific capacity at a rate of 16C (1C = 2 A g −1 ). By using in situ transmission electron microscopy and electrochemical testing, we unravel a novel reaction mechanism of dynamic co-lithiation/co-delithiation in the active Si and Ge bilayer, which is shown to effectively alleviate the electrochemically induced mechanical degradation and thus greatly enhance the long-cycle stability of the electrode. Our findings offer insights into a rational design of high-performance lithium-ion batteries via exploiting the concurrent reaction dynamics in the multiple active components of composite electrodes. A composite anode of Cu/Si/Ge nanowire arrays grown on a porous Ni foam enables the outstanding capacity, rate capability and cycle stability of Li-ion batteries.</description><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electron microscopy</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>Germanium</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Reaction mechanisms</subject><subject>Rechargeable batteries</subject><subject>Silicon</subject><subject>Specific capacity</subject><subject>Transmission electron microscopy</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkd1LwzAUxYsoOKcvvgtB34Rq0jQffZQxN2Hgg_oc0ux2zVjTLUmF_fe21o-nezj8ONx7bpJcE_xAMC0ejQTAOKNFfZJMiGB5ygTmp7-aF9l5chHCFmOeYVFMksNSewchWLdBsQZkWmc678FF5EGbaFuH1kenG2sCsg4N1iegN4u0W6MFoNj2Xm2hN2u7qdEefNX6RjsDaGdjbbsmHUJKHSN4C-EyOav0LsDVz5wmH8_z99kyXb0uXmZPq9RQKWNaARdVRWieyXIteZFzUci8V1xTLbOCibwqSw5cMy4oK5kQIhcMKC9JmZWCTpPbMbcN0apgbART9-c5MFGRnDGKix66G6G9bw8dhKi2beddv5fKMKE8k4IP1P1IGd-G4KFSe28b7Y-KYDX0rmZyPv_ufdnDNyPsg_nj_v9CvwDvpH8W</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Zhang, Qiaobao</creator><creator>Chen, Huixin</creator><creator>Luo, Langli</creator><creator>Zhao, Bote</creator><creator>Luo, Hao</creator><creator>Han, Xiang</creator><creator>Wang, Jiangwei</creator><creator>Wang, Chongmin</creator><creator>Yang, Yong</creator><creator>Zhu, Ting</creator><creator>Liu, Meilin</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1236-6862</orcidid><orcidid>https://orcid.org/0000-0002-6188-2372</orcidid><orcidid>https://orcid.org/0000000312366862</orcidid><orcidid>https://orcid.org/0000000261882372</orcidid></search><sort><creationdate>20180101</creationdate><title>Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries</title><author>Zhang, Qiaobao ; Chen, Huixin ; Luo, Langli ; Zhao, Bote ; Luo, Hao ; Han, Xiang ; Wang, Jiangwei ; Wang, Chongmin ; Yang, Yong ; Zhu, Ting ; Liu, Meilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-fe67ff13428bd869467984d866a3a829574fbb6e6a56735b5777475e36b1b2b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electron microscopy</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>Germanium</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Reaction mechanisms</topic><topic>Rechargeable batteries</topic><topic>Silicon</topic><topic>Specific capacity</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qiaobao</creatorcontrib><creatorcontrib>Chen, Huixin</creatorcontrib><creatorcontrib>Luo, Langli</creatorcontrib><creatorcontrib>Zhao, Bote</creatorcontrib><creatorcontrib>Luo, Hao</creatorcontrib><creatorcontrib>Han, Xiang</creatorcontrib><creatorcontrib>Wang, Jiangwei</creatorcontrib><creatorcontrib>Wang, Chongmin</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Zhu, Ting</creatorcontrib><creatorcontrib>Liu, Meilin</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qiaobao</au><au>Chen, Huixin</au><au>Luo, Langli</au><au>Zhao, Bote</au><au>Luo, Hao</au><au>Han, Xiang</au><au>Wang, Jiangwei</au><au>Wang, Chongmin</au><au>Yang, Yong</au><au>Zhu, Ting</au><au>Liu, Meilin</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>11</volume><issue>3</issue><spage>669</spage><epage>681</epage><pages>669-681</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Advanced composite electrodes containing multiple active components are often used in lithium-ion batteries for practical applications. The performance of such heterogeneous composite electrodes can in principle be enhanced by tailoring the concurrent reaction dynamics in multiple active components for promoting their collective beneficial effects. However, the potential of this design principle has remained uncharted to date. Here we develop a composite anode of Cu/Si/Ge nanowire arrays, where each nanowire consists of a core of Cu segments and a Si/Ge bilayer shell. This unique electrode architecture exhibited a markedly improved electrochemical performance over the reference Cu/Si systems, demonstrating a stable capacity retention (81% after 3000 cycles at 2C) and doubled specific capacity at a rate of 16C (1C = 2 A g −1 ). By using in situ transmission electron microscopy and electrochemical testing, we unravel a novel reaction mechanism of dynamic co-lithiation/co-delithiation in the active Si and Ge bilayer, which is shown to effectively alleviate the electrochemically induced mechanical degradation and thus greatly enhance the long-cycle stability of the electrode. Our findings offer insights into a rational design of high-performance lithium-ion batteries via exploiting the concurrent reaction dynamics in the multiple active components of composite electrodes. A composite anode of Cu/Si/Ge nanowire arrays grown on a porous Ni foam enables the outstanding capacity, rate capability and cycle stability of Li-ion batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8ee00239h</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1236-6862</orcidid><orcidid>https://orcid.org/0000-0002-6188-2372</orcidid><orcidid>https://orcid.org/0000000312366862</orcidid><orcidid>https://orcid.org/0000000261882372</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2018-01, Vol.11 (3), p.669-681
issn 1754-5692
1754-5706
language eng
recordid cdi_osti_scitechconnect_1455309
source Royal Society Of Chemistry Journals
subjects Electrochemical analysis
Electrochemistry
Electrodes
Electron microscopy
Environmental Molecular Sciences Laboratory
Germanium
Lithium
Lithium-ion batteries
Nanotechnology
Nanowires
Reaction mechanisms
Rechargeable batteries
Silicon
Specific capacity
Transmission electron microscopy
title Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20the%20concurrent%20reaction%20dynamics%20in%20active%20Si%20and%20Ge%20to%20achieve%20high%20performance%20lithium-ion%20batteries&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Zhang,%20Qiaobao&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2018-01-01&rft.volume=11&rft.issue=3&rft.spage=669&rft.epage=681&rft.pages=669-681&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c8ee00239h&rft_dat=%3Cproquest_cross%3E2013628769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2013628769&rft_id=info:pmid/&rfr_iscdi=true