Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries
Advanced composite electrodes containing multiple active components are often used in lithium-ion batteries for practical applications. The performance of such heterogeneous composite electrodes can in principle be enhanced by tailoring the concurrent reaction dynamics in multiple active components...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2018-01, Vol.11 (3), p.669-681 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 681 |
---|---|
container_issue | 3 |
container_start_page | 669 |
container_title | Energy & environmental science |
container_volume | 11 |
creator | Zhang, Qiaobao Chen, Huixin Luo, Langli Zhao, Bote Luo, Hao Han, Xiang Wang, Jiangwei Wang, Chongmin Yang, Yong Zhu, Ting Liu, Meilin |
description | Advanced composite electrodes containing multiple active components are often used in lithium-ion batteries for practical applications. The performance of such heterogeneous composite electrodes can in principle be enhanced by tailoring the concurrent reaction dynamics in multiple active components for promoting their collective beneficial effects. However, the potential of this design principle has remained uncharted to date. Here we develop a composite anode of Cu/Si/Ge nanowire arrays, where each nanowire consists of a core of Cu segments and a Si/Ge bilayer shell. This unique electrode architecture exhibited a markedly improved electrochemical performance over the reference Cu/Si systems, demonstrating a stable capacity retention (81% after 3000 cycles at 2C) and doubled specific capacity at a rate of 16C (1C = 2 A g
−1
). By using
in situ
transmission electron microscopy and electrochemical testing, we unravel a novel reaction mechanism of dynamic co-lithiation/co-delithiation in the active Si and Ge bilayer, which is shown to effectively alleviate the electrochemically induced mechanical degradation and thus greatly enhance the long-cycle stability of the electrode. Our findings offer insights into a rational design of high-performance lithium-ion batteries
via
exploiting the concurrent reaction dynamics in the multiple active components of composite electrodes.
A composite anode of Cu/Si/Ge nanowire arrays grown on a porous Ni foam enables the outstanding capacity, rate capability and cycle stability of Li-ion batteries. |
doi_str_mv | 10.1039/c8ee00239h |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_osti_scitechconnect_1455309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2013628769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-fe67ff13428bd869467984d866a3a829574fbb6e6a56735b5777475e36b1b2b73</originalsourceid><addsrcrecordid>eNpFkd1LwzAUxYsoOKcvvgtB34Rq0jQffZQxN2Hgg_oc0ux2zVjTLUmF_fe21o-nezj8ONx7bpJcE_xAMC0ejQTAOKNFfZJMiGB5ygTmp7-aF9l5chHCFmOeYVFMksNSewchWLdBsQZkWmc678FF5EGbaFuH1kenG2sCsg4N1iegN4u0W6MFoNj2Xm2hN2u7qdEefNX6RjsDaGdjbbsmHUJKHSN4C-EyOav0LsDVz5wmH8_z99kyXb0uXmZPq9RQKWNaARdVRWieyXIteZFzUci8V1xTLbOCibwqSw5cMy4oK5kQIhcMKC9JmZWCTpPbMbcN0apgbART9-c5MFGRnDGKix66G6G9bw8dhKi2beddv5fKMKE8k4IP1P1IGd-G4KFSe28b7Y-KYDX0rmZyPv_ufdnDNyPsg_nj_v9CvwDvpH8W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2013628769</pqid></control><display><type>article</type><title>Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries</title><source>Royal Society Of Chemistry Journals</source><creator>Zhang, Qiaobao ; Chen, Huixin ; Luo, Langli ; Zhao, Bote ; Luo, Hao ; Han, Xiang ; Wang, Jiangwei ; Wang, Chongmin ; Yang, Yong ; Zhu, Ting ; Liu, Meilin</creator><creatorcontrib>Zhang, Qiaobao ; Chen, Huixin ; Luo, Langli ; Zhao, Bote ; Luo, Hao ; Han, Xiang ; Wang, Jiangwei ; Wang, Chongmin ; Yang, Yong ; Zhu, Ting ; Liu, Meilin ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Advanced composite electrodes containing multiple active components are often used in lithium-ion batteries for practical applications. The performance of such heterogeneous composite electrodes can in principle be enhanced by tailoring the concurrent reaction dynamics in multiple active components for promoting their collective beneficial effects. However, the potential of this design principle has remained uncharted to date. Here we develop a composite anode of Cu/Si/Ge nanowire arrays, where each nanowire consists of a core of Cu segments and a Si/Ge bilayer shell. This unique electrode architecture exhibited a markedly improved electrochemical performance over the reference Cu/Si systems, demonstrating a stable capacity retention (81% after 3000 cycles at 2C) and doubled specific capacity at a rate of 16C (1C = 2 A g
−1
). By using
in situ
transmission electron microscopy and electrochemical testing, we unravel a novel reaction mechanism of dynamic co-lithiation/co-delithiation in the active Si and Ge bilayer, which is shown to effectively alleviate the electrochemically induced mechanical degradation and thus greatly enhance the long-cycle stability of the electrode. Our findings offer insights into a rational design of high-performance lithium-ion batteries
via
exploiting the concurrent reaction dynamics in the multiple active components of composite electrodes.
A composite anode of Cu/Si/Ge nanowire arrays grown on a porous Ni foam enables the outstanding capacity, rate capability and cycle stability of Li-ion batteries.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c8ee00239h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Electrochemical analysis ; Electrochemistry ; Electrodes ; Electron microscopy ; Environmental Molecular Sciences Laboratory ; Germanium ; Lithium ; Lithium-ion batteries ; Nanotechnology ; Nanowires ; Reaction mechanisms ; Rechargeable batteries ; Silicon ; Specific capacity ; Transmission electron microscopy</subject><ispartof>Energy & environmental science, 2018-01, Vol.11 (3), p.669-681</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-fe67ff13428bd869467984d866a3a829574fbb6e6a56735b5777475e36b1b2b73</citedby><cites>FETCH-LOGICAL-c388t-fe67ff13428bd869467984d866a3a829574fbb6e6a56735b5777475e36b1b2b73</cites><orcidid>0000-0003-1236-6862 ; 0000-0002-6188-2372 ; 0000000312366862 ; 0000000261882372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1455309$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Qiaobao</creatorcontrib><creatorcontrib>Chen, Huixin</creatorcontrib><creatorcontrib>Luo, Langli</creatorcontrib><creatorcontrib>Zhao, Bote</creatorcontrib><creatorcontrib>Luo, Hao</creatorcontrib><creatorcontrib>Han, Xiang</creatorcontrib><creatorcontrib>Wang, Jiangwei</creatorcontrib><creatorcontrib>Wang, Chongmin</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Zhu, Ting</creatorcontrib><creatorcontrib>Liu, Meilin</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries</title><title>Energy & environmental science</title><description>Advanced composite electrodes containing multiple active components are often used in lithium-ion batteries for practical applications. The performance of such heterogeneous composite electrodes can in principle be enhanced by tailoring the concurrent reaction dynamics in multiple active components for promoting their collective beneficial effects. However, the potential of this design principle has remained uncharted to date. Here we develop a composite anode of Cu/Si/Ge nanowire arrays, where each nanowire consists of a core of Cu segments and a Si/Ge bilayer shell. This unique electrode architecture exhibited a markedly improved electrochemical performance over the reference Cu/Si systems, demonstrating a stable capacity retention (81% after 3000 cycles at 2C) and doubled specific capacity at a rate of 16C (1C = 2 A g
−1
). By using
in situ
transmission electron microscopy and electrochemical testing, we unravel a novel reaction mechanism of dynamic co-lithiation/co-delithiation in the active Si and Ge bilayer, which is shown to effectively alleviate the electrochemically induced mechanical degradation and thus greatly enhance the long-cycle stability of the electrode. Our findings offer insights into a rational design of high-performance lithium-ion batteries
via
exploiting the concurrent reaction dynamics in the multiple active components of composite electrodes.
A composite anode of Cu/Si/Ge nanowire arrays grown on a porous Ni foam enables the outstanding capacity, rate capability and cycle stability of Li-ion batteries.</description><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electron microscopy</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>Germanium</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Reaction mechanisms</subject><subject>Rechargeable batteries</subject><subject>Silicon</subject><subject>Specific capacity</subject><subject>Transmission electron microscopy</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkd1LwzAUxYsoOKcvvgtB34Rq0jQffZQxN2Hgg_oc0ux2zVjTLUmF_fe21o-nezj8ONx7bpJcE_xAMC0ejQTAOKNFfZJMiGB5ygTmp7-aF9l5chHCFmOeYVFMksNSewchWLdBsQZkWmc678FF5EGbaFuH1kenG2sCsg4N1iegN4u0W6MFoNj2Xm2hN2u7qdEefNX6RjsDaGdjbbsmHUJKHSN4C-EyOav0LsDVz5wmH8_z99kyXb0uXmZPq9RQKWNaARdVRWieyXIteZFzUci8V1xTLbOCibwqSw5cMy4oK5kQIhcMKC9JmZWCTpPbMbcN0apgbART9-c5MFGRnDGKix66G6G9bw8dhKi2beddv5fKMKE8k4IP1P1IGd-G4KFSe28b7Y-KYDX0rmZyPv_ufdnDNyPsg_nj_v9CvwDvpH8W</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Zhang, Qiaobao</creator><creator>Chen, Huixin</creator><creator>Luo, Langli</creator><creator>Zhao, Bote</creator><creator>Luo, Hao</creator><creator>Han, Xiang</creator><creator>Wang, Jiangwei</creator><creator>Wang, Chongmin</creator><creator>Yang, Yong</creator><creator>Zhu, Ting</creator><creator>Liu, Meilin</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1236-6862</orcidid><orcidid>https://orcid.org/0000-0002-6188-2372</orcidid><orcidid>https://orcid.org/0000000312366862</orcidid><orcidid>https://orcid.org/0000000261882372</orcidid></search><sort><creationdate>20180101</creationdate><title>Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries</title><author>Zhang, Qiaobao ; Chen, Huixin ; Luo, Langli ; Zhao, Bote ; Luo, Hao ; Han, Xiang ; Wang, Jiangwei ; Wang, Chongmin ; Yang, Yong ; Zhu, Ting ; Liu, Meilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-fe67ff13428bd869467984d866a3a829574fbb6e6a56735b5777475e36b1b2b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electron microscopy</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>Germanium</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Reaction mechanisms</topic><topic>Rechargeable batteries</topic><topic>Silicon</topic><topic>Specific capacity</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qiaobao</creatorcontrib><creatorcontrib>Chen, Huixin</creatorcontrib><creatorcontrib>Luo, Langli</creatorcontrib><creatorcontrib>Zhao, Bote</creatorcontrib><creatorcontrib>Luo, Hao</creatorcontrib><creatorcontrib>Han, Xiang</creatorcontrib><creatorcontrib>Wang, Jiangwei</creatorcontrib><creatorcontrib>Wang, Chongmin</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Zhu, Ting</creatorcontrib><creatorcontrib>Liu, Meilin</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qiaobao</au><au>Chen, Huixin</au><au>Luo, Langli</au><au>Zhao, Bote</au><au>Luo, Hao</au><au>Han, Xiang</au><au>Wang, Jiangwei</au><au>Wang, Chongmin</au><au>Yang, Yong</au><au>Zhu, Ting</au><au>Liu, Meilin</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries</atitle><jtitle>Energy & environmental science</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>11</volume><issue>3</issue><spage>669</spage><epage>681</epage><pages>669-681</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Advanced composite electrodes containing multiple active components are often used in lithium-ion batteries for practical applications. The performance of such heterogeneous composite electrodes can in principle be enhanced by tailoring the concurrent reaction dynamics in multiple active components for promoting their collective beneficial effects. However, the potential of this design principle has remained uncharted to date. Here we develop a composite anode of Cu/Si/Ge nanowire arrays, where each nanowire consists of a core of Cu segments and a Si/Ge bilayer shell. This unique electrode architecture exhibited a markedly improved electrochemical performance over the reference Cu/Si systems, demonstrating a stable capacity retention (81% after 3000 cycles at 2C) and doubled specific capacity at a rate of 16C (1C = 2 A g
−1
). By using
in situ
transmission electron microscopy and electrochemical testing, we unravel a novel reaction mechanism of dynamic co-lithiation/co-delithiation in the active Si and Ge bilayer, which is shown to effectively alleviate the electrochemically induced mechanical degradation and thus greatly enhance the long-cycle stability of the electrode. Our findings offer insights into a rational design of high-performance lithium-ion batteries
via
exploiting the concurrent reaction dynamics in the multiple active components of composite electrodes.
A composite anode of Cu/Si/Ge nanowire arrays grown on a porous Ni foam enables the outstanding capacity, rate capability and cycle stability of Li-ion batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8ee00239h</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1236-6862</orcidid><orcidid>https://orcid.org/0000-0002-6188-2372</orcidid><orcidid>https://orcid.org/0000000312366862</orcidid><orcidid>https://orcid.org/0000000261882372</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2018-01, Vol.11 (3), p.669-681 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_osti_scitechconnect_1455309 |
source | Royal Society Of Chemistry Journals |
subjects | Electrochemical analysis Electrochemistry Electrodes Electron microscopy Environmental Molecular Sciences Laboratory Germanium Lithium Lithium-ion batteries Nanotechnology Nanowires Reaction mechanisms Rechargeable batteries Silicon Specific capacity Transmission electron microscopy |
title | Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20the%20concurrent%20reaction%20dynamics%20in%20active%20Si%20and%20Ge%20to%20achieve%20high%20performance%20lithium-ion%20batteries&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Zhang,%20Qiaobao&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2018-01-01&rft.volume=11&rft.issue=3&rft.spage=669&rft.epage=681&rft.pages=669-681&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c8ee00239h&rft_dat=%3Cproquest_cross%3E2013628769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2013628769&rft_id=info:pmid/&rfr_iscdi=true |