Anharmonic contribution to the stabilization of Mg(OH) 2 from first principles

Geometrical and vibrational characterization of magnesium hydroxide was performed using density functional theory. Four possible crystal symmetries were explored: P3[combining macron] (No. 147, point group -3), C2/m (No. 12, point group 2), P3m1 (No. 156, point group 3m) and P3[combining macron]m1 (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2018, Vol.20 (26), p.17799-17808
Hauptverfasser: Treviño, P, Garcia-Castro, A C, López-Moreno, S, Bautista-Hernández, A, Bobocioiu, E, Reynard, B, Caracas, R, Romero, A H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17808
container_issue 26
container_start_page 17799
container_title Physical chemistry chemical physics : PCCP
container_volume 20
creator Treviño, P
Garcia-Castro, A C
López-Moreno, S
Bautista-Hernández, A
Bobocioiu, E
Reynard, B
Caracas, R
Romero, A H
description Geometrical and vibrational characterization of magnesium hydroxide was performed using density functional theory. Four possible crystal symmetries were explored: P3[combining macron] (No. 147, point group -3), C2/m (No. 12, point group 2), P3m1 (No. 156, point group 3m) and P3[combining macron]m1 (No. 164, point group -3m) which are the currently accepted geometries found in the literature. While a lot of work has been performed on Mg(OH) , in particular for the P3[combining macron]m1 phase, there is still a debate on the observed ground state crystal structure and the anharmonic effects of the OH vibrations on the stabilization of the crystal structure. In particular, the stable positions of hydrogen are not yet defined precisely, which have implications in the crystal symmetry, the vibrational excitations, and the thermal stability. Previous work has assigned the P3[combining macron]m1 polymorph as the low energy phase, but it has also proposed that hydrogens are disordered and they could move from their symmetric position in the P3[combining macron]m1 structure towards P3[combining macron]. In this paper, we examine the stability of the proposed phases by using different descriptors. We compare the XRD patterns with reported experimental results, and a fair agreement is found. While harmonic vibrational analysis shows that most phases have imaginary modes at 0 K, anharmonic vibrational analysis indicates that at room temperature only the C2/m phase is stabilized, whereas at higher temperatures, other phases become thermally competitive.
doi_str_mv 10.1039/c8cp02490a
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1455083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057438660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-4ad1a9e1fb2ab29fd43b487d6af9dee7791ff1948def6945941742771b17e0bb3</originalsourceid><addsrcrecordid>eNpd0UFvFCEUB3BiNLZWL34AQ-ylNVnlATPAcbNR12S1HvRMgAGXZmZYgTHRTy_t1j144uXll5c_-SP0EshbIEy9c9IdCOWKmEfoHHjPVopI_vg0i_4MPSvllhACHbCn6IwqRakQ4hx9Wc97k6c0R4ddmmuOdqkxzbgmXPcel2psHOMfc79MAX_-cXWzvcYUh5wmHGIuFR9ynF08jL48R0-CGYt_8fBeoO8f3n_bbFe7m4-fNuvdyjEq64qbAYzyECw1lqowcGa5FENvghq8F0JBCKC4HHzoFe8UB8FbYLAgPLGWXaDXx7up1KiLi9W7fcs_e1c18K4jkjV0fUR7M-qWcTL5t04m6u16p-92hAKRPYdf0OzV0R5y-rn4UvUUi_PjaGaflqIp6QRnsu9Jo5f_0du05Ll9t6meCSbazabeHJXLqZTswykBEH1Xm97Izdf72tYNv3o4udjJDyf6ryf2F7AHj8U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063737864</pqid></control><display><type>article</type><title>Anharmonic contribution to the stabilization of Mg(OH) 2 from first principles</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Treviño, P ; Garcia-Castro, A C ; López-Moreno, S ; Bautista-Hernández, A ; Bobocioiu, E ; Reynard, B ; Caracas, R ; Romero, A H</creator><creatorcontrib>Treviño, P ; Garcia-Castro, A C ; López-Moreno, S ; Bautista-Hernández, A ; Bobocioiu, E ; Reynard, B ; Caracas, R ; Romero, A H</creatorcontrib><description>Geometrical and vibrational characterization of magnesium hydroxide was performed using density functional theory. Four possible crystal symmetries were explored: P3[combining macron] (No. 147, point group -3), C2/m (No. 12, point group 2), P3m1 (No. 156, point group 3m) and P3[combining macron]m1 (No. 164, point group -3m) which are the currently accepted geometries found in the literature. While a lot of work has been performed on Mg(OH) , in particular for the P3[combining macron]m1 phase, there is still a debate on the observed ground state crystal structure and the anharmonic effects of the OH vibrations on the stabilization of the crystal structure. In particular, the stable positions of hydrogen are not yet defined precisely, which have implications in the crystal symmetry, the vibrational excitations, and the thermal stability. Previous work has assigned the P3[combining macron]m1 polymorph as the low energy phase, but it has also proposed that hydrogens are disordered and they could move from their symmetric position in the P3[combining macron]m1 structure towards P3[combining macron]. In this paper, we examine the stability of the proposed phases by using different descriptors. We compare the XRD patterns with reported experimental results, and a fair agreement is found. While harmonic vibrational analysis shows that most phases have imaginary modes at 0 K, anharmonic vibrational analysis indicates that at room temperature only the C2/m phase is stabilized, whereas at higher temperatures, other phases become thermally competitive.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp02490a</identifier><identifier>PMID: 29922777</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anharmonicity ; Chemical Sciences ; Crystal structure ; Density functional theory ; First principles ; Ground-based observation ; Magnesium hydroxide ; Material chemistry ; Phases ; Symmetry ; Thermal stability</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018, Vol.20 (26), p.17799-17808</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-4ad1a9e1fb2ab29fd43b487d6af9dee7791ff1948def6945941742771b17e0bb3</citedby><cites>FETCH-LOGICAL-c328t-4ad1a9e1fb2ab29fd43b487d6af9dee7791ff1948def6945941742771b17e0bb3</cites><orcidid>0000-0001-6292-8275 ; 0000-0003-1360-9483 ; 0000-0001-5968-0571 ; 0000-0003-4586-776X ; 0000-0002-4782-6163 ; 0000000313609483 ; 0000000162928275 ; 0000000159680571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29922777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02108641$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1455083$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Treviño, P</creatorcontrib><creatorcontrib>Garcia-Castro, A C</creatorcontrib><creatorcontrib>López-Moreno, S</creatorcontrib><creatorcontrib>Bautista-Hernández, A</creatorcontrib><creatorcontrib>Bobocioiu, E</creatorcontrib><creatorcontrib>Reynard, B</creatorcontrib><creatorcontrib>Caracas, R</creatorcontrib><creatorcontrib>Romero, A H</creatorcontrib><title>Anharmonic contribution to the stabilization of Mg(OH) 2 from first principles</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Geometrical and vibrational characterization of magnesium hydroxide was performed using density functional theory. Four possible crystal symmetries were explored: P3[combining macron] (No. 147, point group -3), C2/m (No. 12, point group 2), P3m1 (No. 156, point group 3m) and P3[combining macron]m1 (No. 164, point group -3m) which are the currently accepted geometries found in the literature. While a lot of work has been performed on Mg(OH) , in particular for the P3[combining macron]m1 phase, there is still a debate on the observed ground state crystal structure and the anharmonic effects of the OH vibrations on the stabilization of the crystal structure. In particular, the stable positions of hydrogen are not yet defined precisely, which have implications in the crystal symmetry, the vibrational excitations, and the thermal stability. Previous work has assigned the P3[combining macron]m1 polymorph as the low energy phase, but it has also proposed that hydrogens are disordered and they could move from their symmetric position in the P3[combining macron]m1 structure towards P3[combining macron]. In this paper, we examine the stability of the proposed phases by using different descriptors. We compare the XRD patterns with reported experimental results, and a fair agreement is found. While harmonic vibrational analysis shows that most phases have imaginary modes at 0 K, anharmonic vibrational analysis indicates that at room temperature only the C2/m phase is stabilized, whereas at higher temperatures, other phases become thermally competitive.</description><subject>Anharmonicity</subject><subject>Chemical Sciences</subject><subject>Crystal structure</subject><subject>Density functional theory</subject><subject>First principles</subject><subject>Ground-based observation</subject><subject>Magnesium hydroxide</subject><subject>Material chemistry</subject><subject>Phases</subject><subject>Symmetry</subject><subject>Thermal stability</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0UFvFCEUB3BiNLZWL34AQ-ylNVnlATPAcbNR12S1HvRMgAGXZmZYgTHRTy_t1j144uXll5c_-SP0EshbIEy9c9IdCOWKmEfoHHjPVopI_vg0i_4MPSvllhACHbCn6IwqRakQ4hx9Wc97k6c0R4ddmmuOdqkxzbgmXPcel2psHOMfc79MAX_-cXWzvcYUh5wmHGIuFR9ynF08jL48R0-CGYt_8fBeoO8f3n_bbFe7m4-fNuvdyjEq64qbAYzyECw1lqowcGa5FENvghq8F0JBCKC4HHzoFe8UB8FbYLAgPLGWXaDXx7up1KiLi9W7fcs_e1c18K4jkjV0fUR7M-qWcTL5t04m6u16p-92hAKRPYdf0OzV0R5y-rn4UvUUi_PjaGaflqIp6QRnsu9Jo5f_0du05Ll9t6meCSbazabeHJXLqZTswykBEH1Xm97Izdf72tYNv3o4udjJDyf6ryf2F7AHj8U</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Treviño, P</creator><creator>Garcia-Castro, A C</creator><creator>López-Moreno, S</creator><creator>Bautista-Hernández, A</creator><creator>Bobocioiu, E</creator><creator>Reynard, B</creator><creator>Caracas, R</creator><creator>Romero, A H</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6292-8275</orcidid><orcidid>https://orcid.org/0000-0003-1360-9483</orcidid><orcidid>https://orcid.org/0000-0001-5968-0571</orcidid><orcidid>https://orcid.org/0000-0003-4586-776X</orcidid><orcidid>https://orcid.org/0000-0002-4782-6163</orcidid><orcidid>https://orcid.org/0000000313609483</orcidid><orcidid>https://orcid.org/0000000162928275</orcidid><orcidid>https://orcid.org/0000000159680571</orcidid></search><sort><creationdate>2018</creationdate><title>Anharmonic contribution to the stabilization of Mg(OH) 2 from first principles</title><author>Treviño, P ; Garcia-Castro, A C ; López-Moreno, S ; Bautista-Hernández, A ; Bobocioiu, E ; Reynard, B ; Caracas, R ; Romero, A H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-4ad1a9e1fb2ab29fd43b487d6af9dee7791ff1948def6945941742771b17e0bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anharmonicity</topic><topic>Chemical Sciences</topic><topic>Crystal structure</topic><topic>Density functional theory</topic><topic>First principles</topic><topic>Ground-based observation</topic><topic>Magnesium hydroxide</topic><topic>Material chemistry</topic><topic>Phases</topic><topic>Symmetry</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Treviño, P</creatorcontrib><creatorcontrib>Garcia-Castro, A C</creatorcontrib><creatorcontrib>López-Moreno, S</creatorcontrib><creatorcontrib>Bautista-Hernández, A</creatorcontrib><creatorcontrib>Bobocioiu, E</creatorcontrib><creatorcontrib>Reynard, B</creatorcontrib><creatorcontrib>Caracas, R</creatorcontrib><creatorcontrib>Romero, A H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Treviño, P</au><au>Garcia-Castro, A C</au><au>López-Moreno, S</au><au>Bautista-Hernández, A</au><au>Bobocioiu, E</au><au>Reynard, B</au><au>Caracas, R</au><au>Romero, A H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anharmonic contribution to the stabilization of Mg(OH) 2 from first principles</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018</date><risdate>2018</risdate><volume>20</volume><issue>26</issue><spage>17799</spage><epage>17808</epage><pages>17799-17808</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Geometrical and vibrational characterization of magnesium hydroxide was performed using density functional theory. Four possible crystal symmetries were explored: P3[combining macron] (No. 147, point group -3), C2/m (No. 12, point group 2), P3m1 (No. 156, point group 3m) and P3[combining macron]m1 (No. 164, point group -3m) which are the currently accepted geometries found in the literature. While a lot of work has been performed on Mg(OH) , in particular for the P3[combining macron]m1 phase, there is still a debate on the observed ground state crystal structure and the anharmonic effects of the OH vibrations on the stabilization of the crystal structure. In particular, the stable positions of hydrogen are not yet defined precisely, which have implications in the crystal symmetry, the vibrational excitations, and the thermal stability. Previous work has assigned the P3[combining macron]m1 polymorph as the low energy phase, but it has also proposed that hydrogens are disordered and they could move from their symmetric position in the P3[combining macron]m1 structure towards P3[combining macron]. In this paper, we examine the stability of the proposed phases by using different descriptors. We compare the XRD patterns with reported experimental results, and a fair agreement is found. While harmonic vibrational analysis shows that most phases have imaginary modes at 0 K, anharmonic vibrational analysis indicates that at room temperature only the C2/m phase is stabilized, whereas at higher temperatures, other phases become thermally competitive.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29922777</pmid><doi>10.1039/c8cp02490a</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6292-8275</orcidid><orcidid>https://orcid.org/0000-0003-1360-9483</orcidid><orcidid>https://orcid.org/0000-0001-5968-0571</orcidid><orcidid>https://orcid.org/0000-0003-4586-776X</orcidid><orcidid>https://orcid.org/0000-0002-4782-6163</orcidid><orcidid>https://orcid.org/0000000313609483</orcidid><orcidid>https://orcid.org/0000000162928275</orcidid><orcidid>https://orcid.org/0000000159680571</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2018, Vol.20 (26), p.17799-17808
issn 1463-9076
1463-9084
language eng
recordid cdi_osti_scitechconnect_1455083
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Anharmonicity
Chemical Sciences
Crystal structure
Density functional theory
First principles
Ground-based observation
Magnesium hydroxide
Material chemistry
Phases
Symmetry
Thermal stability
title Anharmonic contribution to the stabilization of Mg(OH) 2 from first principles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A45%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anharmonic%20contribution%20to%20the%20stabilization%20of%20Mg(OH)%202%20from%20first%20principles&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Trevi%C3%B1o,%20P&rft.date=2018&rft.volume=20&rft.issue=26&rft.spage=17799&rft.epage=17808&rft.pages=17799-17808&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp02490a&rft_dat=%3Cproquest_osti_%3E2057438660%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063737864&rft_id=info:pmid/29922777&rfr_iscdi=true