Diamine-Appended Mg2(dobpdc) Nanorods as Phase-Change Fillers in Mixed-Matrix Membranes for Efficient CO2/N2 Separations
Despite the availability of chemistries to tailor the pore architectures of microporous polymer membranes for chemical separations, trade-offs in permeability and selectivity with functional group manipulations nevertheless persist, which ultimately places an upper bound on membrane performance. Her...
Gespeichert in:
Veröffentlicht in: | Nano letters 2017-11, Vol.17 (11), p.6828-6832 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6832 |
---|---|
container_issue | 11 |
container_start_page | 6828 |
container_title | Nano letters |
container_volume | 17 |
creator | Maserati, Lorenzo Meckler, Stephen M Bachman, Jonathan E Long, Jeffrey R Helms, Brett A |
description | Despite the availability of chemistries to tailor the pore architectures of microporous polymer membranes for chemical separations, trade-offs in permeability and selectivity with functional group manipulations nevertheless persist, which ultimately places an upper bound on membrane performance. Here we introduce a new design strategy to uncouple these attributes of the membrane. Key to our success is the incorporation of phase-change metal–organic frameworks (MOFs) into the polymer matrix, which can be used to increase the solubility of a specific gas in the membrane, and thereby its permeability. We further show that it is necessary to scale the size of the phase-change MOF to nanoscopic dimensions, in order to take advantage of this effect in a gas separation. Our observation of an increase in solubility and permeability of only one of the gases during steady-state permeability measurements suggests fast exchange between free and chemisorbed gas molecules within the MOF pores. While the kinetics of this exchange in phase-change MOFs are not yet fully understood, their role in enhancing the efficacy and efficiency of the separation is clearly a compelling new direction for membrane technology. |
doi_str_mv | 10.1021/acs.nanolett.7b03106 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1454495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1953300246</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2546-20a9e0350e68582fc2e327affcacd2937394c41cc24a18c1fbbd8c226d1d0c153</originalsourceid><addsrcrecordid>eNo9kc1OwzAQhCMEEqXwBhwsTuWQ1nacNDlWpQWk_iABZ8tZb1pXqR1iV-rjk6qF065Wn0YzO1H0yOiQUc5GCvzQKutqDGE4LmnCaHYV9Via0DgrCn79v-fiNrrzfkcpLZKU9qLji1F7YzGeNA1ajZosN3ygXdloeCarTrR12hPlycdWeYynW2U3SOamrrH1xFiyNEfU8VKF1hzJEvdlqyx6UrmWzKrKgEEbyHTNRytOPrFRrQrGWX8f3VSq9vhwmf3oez77mr7Fi_Xr-3SyiBVPRRZzqgqknVXM8jTnFXBM-FhVFSjQvEjGSSFAMAAuFMuBVWWpc-A800xT6FL3o6ezrvPBSA8mIGzBWYsQJBOpEMUJGpyhpnU_B_RB7o0HrOsuijt4yTomoZSLrEPpGe2eLnfu0NrOvWRUnpqQp-NfE_LSRPILcud-xw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953300246</pqid></control><display><type>article</type><title>Diamine-Appended Mg2(dobpdc) Nanorods as Phase-Change Fillers in Mixed-Matrix Membranes for Efficient CO2/N2 Separations</title><source>American Chemical Society Journals</source><creator>Maserati, Lorenzo ; Meckler, Stephen M ; Bachman, Jonathan E ; Long, Jeffrey R ; Helms, Brett A</creator><creatorcontrib>Maserati, Lorenzo ; Meckler, Stephen M ; Bachman, Jonathan E ; Long, Jeffrey R ; Helms, Brett A ; Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Despite the availability of chemistries to tailor the pore architectures of microporous polymer membranes for chemical separations, trade-offs in permeability and selectivity with functional group manipulations nevertheless persist, which ultimately places an upper bound on membrane performance. Here we introduce a new design strategy to uncouple these attributes of the membrane. Key to our success is the incorporation of phase-change metal–organic frameworks (MOFs) into the polymer matrix, which can be used to increase the solubility of a specific gas in the membrane, and thereby its permeability. We further show that it is necessary to scale the size of the phase-change MOF to nanoscopic dimensions, in order to take advantage of this effect in a gas separation. Our observation of an increase in solubility and permeability of only one of the gases during steady-state permeability measurements suggests fast exchange between free and chemisorbed gas molecules within the MOF pores. While the kinetics of this exchange in phase-change MOFs are not yet fully understood, their role in enhancing the efficacy and efficiency of the separation is clearly a compelling new direction for membrane technology.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.7b03106</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>CO2/N2 separations ; gas separations ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; MATERIALS SCIENCE ; mixed-matrix membranes ; MOF nanocrystals ; phase-change MOFs</subject><ispartof>Nano letters, 2017-11, Vol.17 (11), p.6828-6832</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3313-2355 ; 0000-0003-3925-4174 ; 0000-0002-5324-1321 ; 0000000339254174 ; 0000000253241321 ; 0000000233132355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b03106$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.7b03106$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1454495$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Maserati, Lorenzo</creatorcontrib><creatorcontrib>Meckler, Stephen M</creatorcontrib><creatorcontrib>Bachman, Jonathan E</creatorcontrib><creatorcontrib>Long, Jeffrey R</creatorcontrib><creatorcontrib>Helms, Brett A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Diamine-Appended Mg2(dobpdc) Nanorods as Phase-Change Fillers in Mixed-Matrix Membranes for Efficient CO2/N2 Separations</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Despite the availability of chemistries to tailor the pore architectures of microporous polymer membranes for chemical separations, trade-offs in permeability and selectivity with functional group manipulations nevertheless persist, which ultimately places an upper bound on membrane performance. Here we introduce a new design strategy to uncouple these attributes of the membrane. Key to our success is the incorporation of phase-change metal–organic frameworks (MOFs) into the polymer matrix, which can be used to increase the solubility of a specific gas in the membrane, and thereby its permeability. We further show that it is necessary to scale the size of the phase-change MOF to nanoscopic dimensions, in order to take advantage of this effect in a gas separation. Our observation of an increase in solubility and permeability of only one of the gases during steady-state permeability measurements suggests fast exchange between free and chemisorbed gas molecules within the MOF pores. While the kinetics of this exchange in phase-change MOFs are not yet fully understood, their role in enhancing the efficacy and efficiency of the separation is clearly a compelling new direction for membrane technology.</description><subject>CO2/N2 separations</subject><subject>gas separations</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>MATERIALS SCIENCE</subject><subject>mixed-matrix membranes</subject><subject>MOF nanocrystals</subject><subject>phase-change MOFs</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kc1OwzAQhCMEEqXwBhwsTuWQ1nacNDlWpQWk_iABZ8tZb1pXqR1iV-rjk6qF065Wn0YzO1H0yOiQUc5GCvzQKutqDGE4LmnCaHYV9Via0DgrCn79v-fiNrrzfkcpLZKU9qLji1F7YzGeNA1ajZosN3ygXdloeCarTrR12hPlycdWeYynW2U3SOamrrH1xFiyNEfU8VKF1hzJEvdlqyx6UrmWzKrKgEEbyHTNRytOPrFRrQrGWX8f3VSq9vhwmf3oez77mr7Fi_Xr-3SyiBVPRRZzqgqknVXM8jTnFXBM-FhVFSjQvEjGSSFAMAAuFMuBVWWpc-A800xT6FL3o6ezrvPBSA8mIGzBWYsQJBOpEMUJGpyhpnU_B_RB7o0HrOsuijt4yTomoZSLrEPpGe2eLnfu0NrOvWRUnpqQp-NfE_LSRPILcud-xw</recordid><startdate>20171108</startdate><enddate>20171108</enddate><creator>Maserati, Lorenzo</creator><creator>Meckler, Stephen M</creator><creator>Bachman, Jonathan E</creator><creator>Long, Jeffrey R</creator><creator>Helms, Brett A</creator><general>American Chemical Society</general><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3313-2355</orcidid><orcidid>https://orcid.org/0000-0003-3925-4174</orcidid><orcidid>https://orcid.org/0000-0002-5324-1321</orcidid><orcidid>https://orcid.org/0000000339254174</orcidid><orcidid>https://orcid.org/0000000253241321</orcidid><orcidid>https://orcid.org/0000000233132355</orcidid></search><sort><creationdate>20171108</creationdate><title>Diamine-Appended Mg2(dobpdc) Nanorods as Phase-Change Fillers in Mixed-Matrix Membranes for Efficient CO2/N2 Separations</title><author>Maserati, Lorenzo ; Meckler, Stephen M ; Bachman, Jonathan E ; Long, Jeffrey R ; Helms, Brett A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2546-20a9e0350e68582fc2e327affcacd2937394c41cc24a18c1fbbd8c226d1d0c153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CO2/N2 separations</topic><topic>gas separations</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>MATERIALS SCIENCE</topic><topic>mixed-matrix membranes</topic><topic>MOF nanocrystals</topic><topic>phase-change MOFs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maserati, Lorenzo</creatorcontrib><creatorcontrib>Meckler, Stephen M</creatorcontrib><creatorcontrib>Bachman, Jonathan E</creatorcontrib><creatorcontrib>Long, Jeffrey R</creatorcontrib><creatorcontrib>Helms, Brett A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maserati, Lorenzo</au><au>Meckler, Stephen M</au><au>Bachman, Jonathan E</au><au>Long, Jeffrey R</au><au>Helms, Brett A</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diamine-Appended Mg2(dobpdc) Nanorods as Phase-Change Fillers in Mixed-Matrix Membranes for Efficient CO2/N2 Separations</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2017-11-08</date><risdate>2017</risdate><volume>17</volume><issue>11</issue><spage>6828</spage><epage>6832</epage><pages>6828-6832</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Despite the availability of chemistries to tailor the pore architectures of microporous polymer membranes for chemical separations, trade-offs in permeability and selectivity with functional group manipulations nevertheless persist, which ultimately places an upper bound on membrane performance. Here we introduce a new design strategy to uncouple these attributes of the membrane. Key to our success is the incorporation of phase-change metal–organic frameworks (MOFs) into the polymer matrix, which can be used to increase the solubility of a specific gas in the membrane, and thereby its permeability. We further show that it is necessary to scale the size of the phase-change MOF to nanoscopic dimensions, in order to take advantage of this effect in a gas separation. Our observation of an increase in solubility and permeability of only one of the gases during steady-state permeability measurements suggests fast exchange between free and chemisorbed gas molecules within the MOF pores. While the kinetics of this exchange in phase-change MOFs are not yet fully understood, their role in enhancing the efficacy and efficiency of the separation is clearly a compelling new direction for membrane technology.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.7b03106</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3313-2355</orcidid><orcidid>https://orcid.org/0000-0003-3925-4174</orcidid><orcidid>https://orcid.org/0000-0002-5324-1321</orcidid><orcidid>https://orcid.org/0000000339254174</orcidid><orcidid>https://orcid.org/0000000253241321</orcidid><orcidid>https://orcid.org/0000000233132355</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2017-11, Vol.17 (11), p.6828-6832 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_osti_scitechconnect_1454495 |
source | American Chemical Society Journals |
subjects | CO2/N2 separations gas separations INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY MATERIALS SCIENCE mixed-matrix membranes MOF nanocrystals phase-change MOFs |
title | Diamine-Appended Mg2(dobpdc) Nanorods as Phase-Change Fillers in Mixed-Matrix Membranes for Efficient CO2/N2 Separations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diamine-Appended%20Mg2(dobpdc)%20Nanorods%20as%20Phase-Change%20Fillers%20in%20Mixed-Matrix%20Membranes%20for%20Efficient%20CO2/N2%20Separations&rft.jtitle=Nano%20letters&rft.au=Maserati,%20Lorenzo&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Gas%20Separations%20Relevant%20to%20Clean%20Energy%20Technologies%20(CGS)&rft.date=2017-11-08&rft.volume=17&rft.issue=11&rft.spage=6828&rft.epage=6832&rft.pages=6828-6832&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.7b03106&rft_dat=%3Cproquest_osti_%3E1953300246%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1953300246&rft_id=info:pmid/&rfr_iscdi=true |