Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride
This study describes the evolving state of electrolyte and corrosion processes associated with sodium chloride on copper at the initial stage of corrosion and the critical implications of this behavior on controlling kinetics and damage distributions. Sodium chloride droplets were placed on copper i...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2018-06, Vol.276 (C), p.194-206 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 206 |
---|---|
container_issue | C |
container_start_page | 194 |
container_title | Electrochimica acta |
container_volume | 276 |
creator | Schindelholz, E.J. Cong, H. Jove-Colon, C.F. Li, S. Ohlhausen, J.A. Moffat, H.K. |
description | This study describes the evolving state of electrolyte and corrosion processes associated with sodium chloride on copper at the initial stage of corrosion and the critical implications of this behavior on controlling kinetics and damage distributions. Sodium chloride droplets were placed on copper in humid conditions and the resulting electrolyte properties, corrosion products and damage were characterized over time using time-lapse imaging, micro Raman spectroscopy, TOF-SIMS and optical profilometry. Within minutes of NaCl droplet placement, NaOH-rich films resultant from oxygen reduction advanced stepwise from the droplets, leaving behind concentric trenching attack patterns suggestive of moving anode-cathode pairs at the alkaline film front. Corrosion attack under these spreading alkaline films was up to 10x greater than under the original NaCl drops. Furthermore, solid Cu2Cl(OH)3 shells formed over the surface of the NaCl drops within hours of exposure. Thermodynamic modeling along with immersed electrochemical experiments in simulated droplet and films electrolytes were used to rationalize this behavior and build a description of the rapidly evolving corroding system. |
doi_str_mv | 10.1016/j.electacta.2018.04.184 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1444080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468618309538</els_id><sourcerecordid>2083808207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-ec5bd81d95ae7f15b144119072addf9716ca92ef8390e6821f7c4412d1acd0fb3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BouuW2_6SrochvEBA2504yZkkhua0jY16Qj-e1NG3AqBwOU7h3MOIbcUMgq0fugy7FHNMr4sB8ozKDPKyzOyopwVacGr5pysAGiRljWvL8lVCB0AsJrBinzsFrF3qsXBKtknMkzxEBJnEuWmCX0i58GFqUVvVTx574J1Y2LHZG4xmTwGHBUufHDaHodEtb3zVuM1uTCyD3jz-6_J--Pubfuc7l-fXrabfarKqp5TVNVBc6qbSiIztDrQsqS0AZZLrU3DaK1kk6PhRQNY85wapiKRayqVBnMo1uTu5OvCbEVQdkbVKjeOsYeIZiVwiND9CZq8-zximEXnjn6MuUQOvODAc2CRYidKxZbBoxGTt4P034KCWNYWnfhbWyxrCyhFXDsqNyclxqZfFv0SZBlGW7_k0M7-6_EDbFiNow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083808207</pqid></control><display><type>article</type><title>Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Schindelholz, E.J. ; Cong, H. ; Jove-Colon, C.F. ; Li, S. ; Ohlhausen, J.A. ; Moffat, H.K.</creator><creatorcontrib>Schindelholz, E.J. ; Cong, H. ; Jove-Colon, C.F. ; Li, S. ; Ohlhausen, J.A. ; Moffat, H.K. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>This study describes the evolving state of electrolyte and corrosion processes associated with sodium chloride on copper at the initial stage of corrosion and the critical implications of this behavior on controlling kinetics and damage distributions. Sodium chloride droplets were placed on copper in humid conditions and the resulting electrolyte properties, corrosion products and damage were characterized over time using time-lapse imaging, micro Raman spectroscopy, TOF-SIMS and optical profilometry. Within minutes of NaCl droplet placement, NaOH-rich films resultant from oxygen reduction advanced stepwise from the droplets, leaving behind concentric trenching attack patterns suggestive of moving anode-cathode pairs at the alkaline film front. Corrosion attack under these spreading alkaline films was up to 10x greater than under the original NaCl drops. Furthermore, solid Cu2Cl(OH)3 shells formed over the surface of the NaCl drops within hours of exposure. Thermodynamic modeling along with immersed electrochemical experiments in simulated droplet and films electrolytes were used to rationalize this behavior and build a description of the rapidly evolving corroding system.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2018.04.184</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Anodic dissolution ; Atmospheric corrosion ; Atmospheric models ; Computer simulation ; Copper ; Corrosion products ; Droplets ; Electrolytes ; Evolution ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Marine ; Polarization ; Reaction kinetics ; Sodium chloride ; Sodium hydroxide ; Thermodynamic model ; Thermodynamic models ; Trenching</subject><ispartof>Electrochimica acta, 2018-06, Vol.276 (C), p.194-206</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-ec5bd81d95ae7f15b144119072addf9716ca92ef8390e6821f7c4412d1acd0fb3</citedby><cites>FETCH-LOGICAL-c456t-ec5bd81d95ae7f15b144119072addf9716ca92ef8390e6821f7c4412d1acd0fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468618309538$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1444080$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schindelholz, E.J.</creatorcontrib><creatorcontrib>Cong, H.</creatorcontrib><creatorcontrib>Jove-Colon, C.F.</creatorcontrib><creatorcontrib>Li, S.</creatorcontrib><creatorcontrib>Ohlhausen, J.A.</creatorcontrib><creatorcontrib>Moffat, H.K.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride</title><title>Electrochimica acta</title><description>This study describes the evolving state of electrolyte and corrosion processes associated with sodium chloride on copper at the initial stage of corrosion and the critical implications of this behavior on controlling kinetics and damage distributions. Sodium chloride droplets were placed on copper in humid conditions and the resulting electrolyte properties, corrosion products and damage were characterized over time using time-lapse imaging, micro Raman spectroscopy, TOF-SIMS and optical profilometry. Within minutes of NaCl droplet placement, NaOH-rich films resultant from oxygen reduction advanced stepwise from the droplets, leaving behind concentric trenching attack patterns suggestive of moving anode-cathode pairs at the alkaline film front. Corrosion attack under these spreading alkaline films was up to 10x greater than under the original NaCl drops. Furthermore, solid Cu2Cl(OH)3 shells formed over the surface of the NaCl drops within hours of exposure. Thermodynamic modeling along with immersed electrochemical experiments in simulated droplet and films electrolytes were used to rationalize this behavior and build a description of the rapidly evolving corroding system.</description><subject>Anodic dissolution</subject><subject>Atmospheric corrosion</subject><subject>Atmospheric models</subject><subject>Computer simulation</subject><subject>Copper</subject><subject>Corrosion products</subject><subject>Droplets</subject><subject>Electrolytes</subject><subject>Evolution</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Marine</subject><subject>Polarization</subject><subject>Reaction kinetics</subject><subject>Sodium chloride</subject><subject>Sodium hydroxide</subject><subject>Thermodynamic model</subject><subject>Thermodynamic models</subject><subject>Trenching</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BouuW2_6SrochvEBA2504yZkkhua0jY16Qj-e1NG3AqBwOU7h3MOIbcUMgq0fugy7FHNMr4sB8ozKDPKyzOyopwVacGr5pysAGiRljWvL8lVCB0AsJrBinzsFrF3qsXBKtknMkzxEBJnEuWmCX0i58GFqUVvVTx574J1Y2LHZG4xmTwGHBUufHDaHodEtb3zVuM1uTCyD3jz-6_J--Pubfuc7l-fXrabfarKqp5TVNVBc6qbSiIztDrQsqS0AZZLrU3DaK1kk6PhRQNY85wapiKRayqVBnMo1uTu5OvCbEVQdkbVKjeOsYeIZiVwiND9CZq8-zximEXnjn6MuUQOvODAc2CRYidKxZbBoxGTt4P034KCWNYWnfhbWyxrCyhFXDsqNyclxqZfFv0SZBlGW7_k0M7-6_EDbFiNow</recordid><startdate>20180620</startdate><enddate>20180620</enddate><creator>Schindelholz, E.J.</creator><creator>Cong, H.</creator><creator>Jove-Colon, C.F.</creator><creator>Li, S.</creator><creator>Ohlhausen, J.A.</creator><creator>Moffat, H.K.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180620</creationdate><title>Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride</title><author>Schindelholz, E.J. ; Cong, H. ; Jove-Colon, C.F. ; Li, S. ; Ohlhausen, J.A. ; Moffat, H.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-ec5bd81d95ae7f15b144119072addf9716ca92ef8390e6821f7c4412d1acd0fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anodic dissolution</topic><topic>Atmospheric corrosion</topic><topic>Atmospheric models</topic><topic>Computer simulation</topic><topic>Copper</topic><topic>Corrosion products</topic><topic>Droplets</topic><topic>Electrolytes</topic><topic>Evolution</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Marine</topic><topic>Polarization</topic><topic>Reaction kinetics</topic><topic>Sodium chloride</topic><topic>Sodium hydroxide</topic><topic>Thermodynamic model</topic><topic>Thermodynamic models</topic><topic>Trenching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schindelholz, E.J.</creatorcontrib><creatorcontrib>Cong, H.</creatorcontrib><creatorcontrib>Jove-Colon, C.F.</creatorcontrib><creatorcontrib>Li, S.</creatorcontrib><creatorcontrib>Ohlhausen, J.A.</creatorcontrib><creatorcontrib>Moffat, H.K.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schindelholz, E.J.</au><au>Cong, H.</au><au>Jove-Colon, C.F.</au><au>Li, S.</au><au>Ohlhausen, J.A.</au><au>Moffat, H.K.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride</atitle><jtitle>Electrochimica acta</jtitle><date>2018-06-20</date><risdate>2018</risdate><volume>276</volume><issue>C</issue><spage>194</spage><epage>206</epage><pages>194-206</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>This study describes the evolving state of electrolyte and corrosion processes associated with sodium chloride on copper at the initial stage of corrosion and the critical implications of this behavior on controlling kinetics and damage distributions. Sodium chloride droplets were placed on copper in humid conditions and the resulting electrolyte properties, corrosion products and damage were characterized over time using time-lapse imaging, micro Raman spectroscopy, TOF-SIMS and optical profilometry. Within minutes of NaCl droplet placement, NaOH-rich films resultant from oxygen reduction advanced stepwise from the droplets, leaving behind concentric trenching attack patterns suggestive of moving anode-cathode pairs at the alkaline film front. Corrosion attack under these spreading alkaline films was up to 10x greater than under the original NaCl drops. Furthermore, solid Cu2Cl(OH)3 shells formed over the surface of the NaCl drops within hours of exposure. Thermodynamic modeling along with immersed electrochemical experiments in simulated droplet and films electrolytes were used to rationalize this behavior and build a description of the rapidly evolving corroding system.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2018.04.184</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2018-06, Vol.276 (C), p.194-206 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_osti_scitechconnect_1444080 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Anodic dissolution Atmospheric corrosion Atmospheric models Computer simulation Copper Corrosion products Droplets Electrolytes Evolution INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Marine Polarization Reaction kinetics Sodium chloride Sodium hydroxide Thermodynamic model Thermodynamic models Trenching |
title | Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20aspects%20of%20copper%20atmospheric%20corrosion%20in%20the%20presence%20of%20sodium%20chloride&rft.jtitle=Electrochimica%20acta&rft.au=Schindelholz,%20E.J.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2018-06-20&rft.volume=276&rft.issue=C&rft.spage=194&rft.epage=206&rft.pages=194-206&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2018.04.184&rft_dat=%3Cproquest_osti_%3E2083808207%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083808207&rft_id=info:pmid/&rft_els_id=S0013468618309538&rfr_iscdi=true |