Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride

This study describes the evolving state of electrolyte and corrosion processes associated with sodium chloride on copper at the initial stage of corrosion and the critical implications of this behavior on controlling kinetics and damage distributions. Sodium chloride droplets were placed on copper i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2018-06, Vol.276 (C), p.194-206
Hauptverfasser: Schindelholz, E.J., Cong, H., Jove-Colon, C.F., Li, S., Ohlhausen, J.A., Moffat, H.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 206
container_issue C
container_start_page 194
container_title Electrochimica acta
container_volume 276
creator Schindelholz, E.J.
Cong, H.
Jove-Colon, C.F.
Li, S.
Ohlhausen, J.A.
Moffat, H.K.
description This study describes the evolving state of electrolyte and corrosion processes associated with sodium chloride on copper at the initial stage of corrosion and the critical implications of this behavior on controlling kinetics and damage distributions. Sodium chloride droplets were placed on copper in humid conditions and the resulting electrolyte properties, corrosion products and damage were characterized over time using time-lapse imaging, micro Raman spectroscopy, TOF-SIMS and optical profilometry. Within minutes of NaCl droplet placement, NaOH-rich films resultant from oxygen reduction advanced stepwise from the droplets, leaving behind concentric trenching attack patterns suggestive of moving anode-cathode pairs at the alkaline film front. Corrosion attack under these spreading alkaline films was up to 10x greater than under the original NaCl drops. Furthermore, solid Cu2Cl(OH)3 shells formed over the surface of the NaCl drops within hours of exposure. Thermodynamic modeling along with immersed electrochemical experiments in simulated droplet and films electrolytes were used to rationalize this behavior and build a description of the rapidly evolving corroding system.
doi_str_mv 10.1016/j.electacta.2018.04.184
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1444080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468618309538</els_id><sourcerecordid>2083808207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-ec5bd81d95ae7f15b144119072addf9716ca92ef8390e6821f7c4412d1acd0fb3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BouuW2_6SrochvEBA2504yZkkhua0jY16Qj-e1NG3AqBwOU7h3MOIbcUMgq0fugy7FHNMr4sB8ozKDPKyzOyopwVacGr5pysAGiRljWvL8lVCB0AsJrBinzsFrF3qsXBKtknMkzxEBJnEuWmCX0i58GFqUVvVTx574J1Y2LHZG4xmTwGHBUufHDaHodEtb3zVuM1uTCyD3jz-6_J--Pubfuc7l-fXrabfarKqp5TVNVBc6qbSiIztDrQsqS0AZZLrU3DaK1kk6PhRQNY85wapiKRayqVBnMo1uTu5OvCbEVQdkbVKjeOsYeIZiVwiND9CZq8-zximEXnjn6MuUQOvODAc2CRYidKxZbBoxGTt4P034KCWNYWnfhbWyxrCyhFXDsqNyclxqZfFv0SZBlGW7_k0M7-6_EDbFiNow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083808207</pqid></control><display><type>article</type><title>Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Schindelholz, E.J. ; Cong, H. ; Jove-Colon, C.F. ; Li, S. ; Ohlhausen, J.A. ; Moffat, H.K.</creator><creatorcontrib>Schindelholz, E.J. ; Cong, H. ; Jove-Colon, C.F. ; Li, S. ; Ohlhausen, J.A. ; Moffat, H.K. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>This study describes the evolving state of electrolyte and corrosion processes associated with sodium chloride on copper at the initial stage of corrosion and the critical implications of this behavior on controlling kinetics and damage distributions. Sodium chloride droplets were placed on copper in humid conditions and the resulting electrolyte properties, corrosion products and damage were characterized over time using time-lapse imaging, micro Raman spectroscopy, TOF-SIMS and optical profilometry. Within minutes of NaCl droplet placement, NaOH-rich films resultant from oxygen reduction advanced stepwise from the droplets, leaving behind concentric trenching attack patterns suggestive of moving anode-cathode pairs at the alkaline film front. Corrosion attack under these spreading alkaline films was up to 10x greater than under the original NaCl drops. Furthermore, solid Cu2Cl(OH)3 shells formed over the surface of the NaCl drops within hours of exposure. Thermodynamic modeling along with immersed electrochemical experiments in simulated droplet and films electrolytes were used to rationalize this behavior and build a description of the rapidly evolving corroding system.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2018.04.184</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Anodic dissolution ; Atmospheric corrosion ; Atmospheric models ; Computer simulation ; Copper ; Corrosion products ; Droplets ; Electrolytes ; Evolution ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Marine ; Polarization ; Reaction kinetics ; Sodium chloride ; Sodium hydroxide ; Thermodynamic model ; Thermodynamic models ; Trenching</subject><ispartof>Electrochimica acta, 2018-06, Vol.276 (C), p.194-206</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-ec5bd81d95ae7f15b144119072addf9716ca92ef8390e6821f7c4412d1acd0fb3</citedby><cites>FETCH-LOGICAL-c456t-ec5bd81d95ae7f15b144119072addf9716ca92ef8390e6821f7c4412d1acd0fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468618309538$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1444080$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schindelholz, E.J.</creatorcontrib><creatorcontrib>Cong, H.</creatorcontrib><creatorcontrib>Jove-Colon, C.F.</creatorcontrib><creatorcontrib>Li, S.</creatorcontrib><creatorcontrib>Ohlhausen, J.A.</creatorcontrib><creatorcontrib>Moffat, H.K.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride</title><title>Electrochimica acta</title><description>This study describes the evolving state of electrolyte and corrosion processes associated with sodium chloride on copper at the initial stage of corrosion and the critical implications of this behavior on controlling kinetics and damage distributions. Sodium chloride droplets were placed on copper in humid conditions and the resulting electrolyte properties, corrosion products and damage were characterized over time using time-lapse imaging, micro Raman spectroscopy, TOF-SIMS and optical profilometry. Within minutes of NaCl droplet placement, NaOH-rich films resultant from oxygen reduction advanced stepwise from the droplets, leaving behind concentric trenching attack patterns suggestive of moving anode-cathode pairs at the alkaline film front. Corrosion attack under these spreading alkaline films was up to 10x greater than under the original NaCl drops. Furthermore, solid Cu2Cl(OH)3 shells formed over the surface of the NaCl drops within hours of exposure. Thermodynamic modeling along with immersed electrochemical experiments in simulated droplet and films electrolytes were used to rationalize this behavior and build a description of the rapidly evolving corroding system.</description><subject>Anodic dissolution</subject><subject>Atmospheric corrosion</subject><subject>Atmospheric models</subject><subject>Computer simulation</subject><subject>Copper</subject><subject>Corrosion products</subject><subject>Droplets</subject><subject>Electrolytes</subject><subject>Evolution</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Marine</subject><subject>Polarization</subject><subject>Reaction kinetics</subject><subject>Sodium chloride</subject><subject>Sodium hydroxide</subject><subject>Thermodynamic model</subject><subject>Thermodynamic models</subject><subject>Trenching</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BouuW2_6SrochvEBA2504yZkkhua0jY16Qj-e1NG3AqBwOU7h3MOIbcUMgq0fugy7FHNMr4sB8ozKDPKyzOyopwVacGr5pysAGiRljWvL8lVCB0AsJrBinzsFrF3qsXBKtknMkzxEBJnEuWmCX0i58GFqUVvVTx574J1Y2LHZG4xmTwGHBUufHDaHodEtb3zVuM1uTCyD3jz-6_J--Pubfuc7l-fXrabfarKqp5TVNVBc6qbSiIztDrQsqS0AZZLrU3DaK1kk6PhRQNY85wapiKRayqVBnMo1uTu5OvCbEVQdkbVKjeOsYeIZiVwiND9CZq8-zximEXnjn6MuUQOvODAc2CRYidKxZbBoxGTt4P034KCWNYWnfhbWyxrCyhFXDsqNyclxqZfFv0SZBlGW7_k0M7-6_EDbFiNow</recordid><startdate>20180620</startdate><enddate>20180620</enddate><creator>Schindelholz, E.J.</creator><creator>Cong, H.</creator><creator>Jove-Colon, C.F.</creator><creator>Li, S.</creator><creator>Ohlhausen, J.A.</creator><creator>Moffat, H.K.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180620</creationdate><title>Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride</title><author>Schindelholz, E.J. ; Cong, H. ; Jove-Colon, C.F. ; Li, S. ; Ohlhausen, J.A. ; Moffat, H.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-ec5bd81d95ae7f15b144119072addf9716ca92ef8390e6821f7c4412d1acd0fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anodic dissolution</topic><topic>Atmospheric corrosion</topic><topic>Atmospheric models</topic><topic>Computer simulation</topic><topic>Copper</topic><topic>Corrosion products</topic><topic>Droplets</topic><topic>Electrolytes</topic><topic>Evolution</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Marine</topic><topic>Polarization</topic><topic>Reaction kinetics</topic><topic>Sodium chloride</topic><topic>Sodium hydroxide</topic><topic>Thermodynamic model</topic><topic>Thermodynamic models</topic><topic>Trenching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schindelholz, E.J.</creatorcontrib><creatorcontrib>Cong, H.</creatorcontrib><creatorcontrib>Jove-Colon, C.F.</creatorcontrib><creatorcontrib>Li, S.</creatorcontrib><creatorcontrib>Ohlhausen, J.A.</creatorcontrib><creatorcontrib>Moffat, H.K.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schindelholz, E.J.</au><au>Cong, H.</au><au>Jove-Colon, C.F.</au><au>Li, S.</au><au>Ohlhausen, J.A.</au><au>Moffat, H.K.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride</atitle><jtitle>Electrochimica acta</jtitle><date>2018-06-20</date><risdate>2018</risdate><volume>276</volume><issue>C</issue><spage>194</spage><epage>206</epage><pages>194-206</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>This study describes the evolving state of electrolyte and corrosion processes associated with sodium chloride on copper at the initial stage of corrosion and the critical implications of this behavior on controlling kinetics and damage distributions. Sodium chloride droplets were placed on copper in humid conditions and the resulting electrolyte properties, corrosion products and damage were characterized over time using time-lapse imaging, micro Raman spectroscopy, TOF-SIMS and optical profilometry. Within minutes of NaCl droplet placement, NaOH-rich films resultant from oxygen reduction advanced stepwise from the droplets, leaving behind concentric trenching attack patterns suggestive of moving anode-cathode pairs at the alkaline film front. Corrosion attack under these spreading alkaline films was up to 10x greater than under the original NaCl drops. Furthermore, solid Cu2Cl(OH)3 shells formed over the surface of the NaCl drops within hours of exposure. Thermodynamic modeling along with immersed electrochemical experiments in simulated droplet and films electrolytes were used to rationalize this behavior and build a description of the rapidly evolving corroding system.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2018.04.184</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2018-06, Vol.276 (C), p.194-206
issn 0013-4686
1873-3859
language eng
recordid cdi_osti_scitechconnect_1444080
source Elsevier ScienceDirect Journals Complete
subjects Anodic dissolution
Atmospheric corrosion
Atmospheric models
Computer simulation
Copper
Corrosion products
Droplets
Electrolytes
Evolution
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Marine
Polarization
Reaction kinetics
Sodium chloride
Sodium hydroxide
Thermodynamic model
Thermodynamic models
Trenching
title Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20aspects%20of%20copper%20atmospheric%20corrosion%20in%20the%20presence%20of%20sodium%20chloride&rft.jtitle=Electrochimica%20acta&rft.au=Schindelholz,%20E.J.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2018-06-20&rft.volume=276&rft.issue=C&rft.spage=194&rft.epage=206&rft.pages=194-206&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2018.04.184&rft_dat=%3Cproquest_osti_%3E2083808207%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083808207&rft_id=info:pmid/&rft_els_id=S0013468618309538&rfr_iscdi=true