Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence

The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2018-05, Vol.17 (5), p.416-420
Hauptverfasser: Boschini, F., da Silva Neto, E. H., Razzoli, E., Zonno, M., Peli, S., Day, R. P., Michiardi, M., Schneider, M., Zwartsenberg, B., Nigge, P., Zhong, R. D., Schneeloch, J., Gu, G. D., Zhdanovich, S., Mills, A. K., Levy, G., Jones, D. J., Giannetti, C., Damascelli, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 420
container_issue 5
container_start_page 416
container_title Nature materials
container_volume 17
creator Boschini, F.
da Silva Neto, E. H.
Razzoli, E.
Zonno, M.
Peli, S.
Day, R. P.
Michiardi, M.
Schneider, M.
Zwartsenberg, B.
Nigge, P.
Zhong, R. D.
Schneeloch, J.
Gu, G. D.
Zhdanovich, S.
Mills, A. K.
Levy, G.
Jones, D. J.
Giannetti, C.
Damascelli, A.
description The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically gated oxide interfaces 1 , 2 , ultracold Fermi atoms 3 , 4 and cuprate superconductors 5 , 6 , which are characterized by an intrinsically small phase stiffness, are paradigmatic examples where these tools are having a dramatic impact. Here we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bi 2 Sr 2 CaCu 2 O 8+ δ cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram. Pump–probe, time-resolved ARPES experiments with underdoped cuprates reveal the transient enhancement of the density of phase fluctuations, eventually leading to the collapse of superconductivity.
doi_str_mv 10.1038/s41563-018-0045-1
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1440896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2029590104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-b3d59656c2ad7df36b270f82be84697be770fe883feb9c93acdd6f57119637f33</originalsourceid><addsrcrecordid>eNp1kUtP3DAUhS1UxMDAD2BTRe2GTcDvOMtqVGglpG5gbTnONWM0E6e2MxL_HkcZWqlSV3599_jecxC6JviWYKbuEidCshoTVWPMRU1O0Dnhjay5lPjTcU8IpSt0kdIrxpQIIc_QiraSYK6ac_S0CbudGRNUwVVpGiHaMPSTzf7g81vlh8pOYzQZUnXwppp2ORpnUq5-TzDYrR9e5sJxa4qCDVuI5RYu0akzuwRXx3WNnu-_P21-1I-_Hn5uvj3WVmCV6471opVCWmr6pndMdrTBTtEOFJdt00FTjqAUc9C1tmXG9r10oiGklaxxjK3Rl0U3pOx1sj6D3Zb-B7BZE86xKuAa3SzQGENpOmW998lCmXqAMCVNiyuMclocXaOv_6CvYYpDGWGmWtHi4lqhyELZGFKK4PQY_d7EN02wnnPRSy665KLnXDQpNZ-PylO3h_5PxUcQBaALkMrT8ALx79f_V30HK7iXxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2029590104</pqid></control><display><type>article</type><title>Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Boschini, F. ; da Silva Neto, E. H. ; Razzoli, E. ; Zonno, M. ; Peli, S. ; Day, R. P. ; Michiardi, M. ; Schneider, M. ; Zwartsenberg, B. ; Nigge, P. ; Zhong, R. D. ; Schneeloch, J. ; Gu, G. D. ; Zhdanovich, S. ; Mills, A. K. ; Levy, G. ; Jones, D. J. ; Giannetti, C. ; Damascelli, A.</creator><creatorcontrib>Boschini, F. ; da Silva Neto, E. H. ; Razzoli, E. ; Zonno, M. ; Peli, S. ; Day, R. P. ; Michiardi, M. ; Schneider, M. ; Zwartsenberg, B. ; Nigge, P. ; Zhong, R. D. ; Schneeloch, J. ; Gu, G. D. ; Zhdanovich, S. ; Mills, A. K. ; Levy, G. ; Jones, D. J. ; Giannetti, C. ; Damascelli, A. ; Energy Frontier Research Centers (EFRC) (United States). Center for Emergent Superconductivity (CES) ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically gated oxide interfaces 1 , 2 , ultracold Fermi atoms 3 , 4 and cuprate superconductors 5 , 6 , which are characterized by an intrinsically small phase stiffness, are paradigmatic examples where these tools are having a dramatic impact. Here we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bi 2 Sr 2 CaCu 2 O 8+ δ cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram. Pump–probe, time-resolved ARPES experiments with underdoped cuprates reveal the transient enhancement of the density of phase fluctuations, eventually leading to the collapse of superconductivity.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-018-0045-1</identifier><identifier>PMID: 29610487</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/766/119 ; 639/766/119/1003 ; 639/766/119/2795 ; Biomaterials ; Chemistry and Materials Science ; Condensates ; Condensed Matter Physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Cuprates ; Fluctuations ; Fragility ; Letter ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Phase coherence ; Phase transitions ; Photoelectric emission ; Stiffness ; Superconductivity ; Thermalization (energy absorption) ; Variation</subject><ispartof>Nature materials, 2018-05, Vol.17 (5), p.416-420</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group May 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-b3d59656c2ad7df36b270f82be84697be770fe883feb9c93acdd6f57119637f33</citedby><cites>FETCH-LOGICAL-c508t-b3d59656c2ad7df36b270f82be84697be770fe883feb9c93acdd6f57119637f33</cites><orcidid>0000-0003-1652-9454 ; 0000-0003-2664-9492 ; 0000000326649492 ; 0000000298863255 ; 0000000316529454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-018-0045-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-018-0045-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29610487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1440896$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Boschini, F.</creatorcontrib><creatorcontrib>da Silva Neto, E. H.</creatorcontrib><creatorcontrib>Razzoli, E.</creatorcontrib><creatorcontrib>Zonno, M.</creatorcontrib><creatorcontrib>Peli, S.</creatorcontrib><creatorcontrib>Day, R. P.</creatorcontrib><creatorcontrib>Michiardi, M.</creatorcontrib><creatorcontrib>Schneider, M.</creatorcontrib><creatorcontrib>Zwartsenberg, B.</creatorcontrib><creatorcontrib>Nigge, P.</creatorcontrib><creatorcontrib>Zhong, R. D.</creatorcontrib><creatorcontrib>Schneeloch, J.</creatorcontrib><creatorcontrib>Gu, G. D.</creatorcontrib><creatorcontrib>Zhdanovich, S.</creatorcontrib><creatorcontrib>Mills, A. K.</creatorcontrib><creatorcontrib>Levy, G.</creatorcontrib><creatorcontrib>Jones, D. J.</creatorcontrib><creatorcontrib>Giannetti, C.</creatorcontrib><creatorcontrib>Damascelli, A.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Emergent Superconductivity (CES)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically gated oxide interfaces 1 , 2 , ultracold Fermi atoms 3 , 4 and cuprate superconductors 5 , 6 , which are characterized by an intrinsically small phase stiffness, are paradigmatic examples where these tools are having a dramatic impact. Here we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bi 2 Sr 2 CaCu 2 O 8+ δ cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram. Pump–probe, time-resolved ARPES experiments with underdoped cuprates reveal the transient enhancement of the density of phase fluctuations, eventually leading to the collapse of superconductivity.</description><subject>140/125</subject><subject>639/766/119</subject><subject>639/766/119/1003</subject><subject>639/766/119/2795</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensates</subject><subject>Condensed Matter Physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Cuprates</subject><subject>Fluctuations</subject><subject>Fragility</subject><subject>Letter</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Phase coherence</subject><subject>Phase transitions</subject><subject>Photoelectric emission</subject><subject>Stiffness</subject><subject>Superconductivity</subject><subject>Thermalization (energy absorption)</subject><subject>Variation</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kUtP3DAUhS1UxMDAD2BTRe2GTcDvOMtqVGglpG5gbTnONWM0E6e2MxL_HkcZWqlSV3599_jecxC6JviWYKbuEidCshoTVWPMRU1O0Dnhjay5lPjTcU8IpSt0kdIrxpQIIc_QiraSYK6ac_S0CbudGRNUwVVpGiHaMPSTzf7g81vlh8pOYzQZUnXwppp2ORpnUq5-TzDYrR9e5sJxa4qCDVuI5RYu0akzuwRXx3WNnu-_P21-1I-_Hn5uvj3WVmCV6471opVCWmr6pndMdrTBTtEOFJdt00FTjqAUc9C1tmXG9r10oiGklaxxjK3Rl0U3pOx1sj6D3Zb-B7BZE86xKuAa3SzQGENpOmW998lCmXqAMCVNiyuMclocXaOv_6CvYYpDGWGmWtHi4lqhyELZGFKK4PQY_d7EN02wnnPRSy665KLnXDQpNZ-PylO3h_5PxUcQBaALkMrT8ALx79f_V30HK7iXxg</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Boschini, F.</creator><creator>da Silva Neto, E. H.</creator><creator>Razzoli, E.</creator><creator>Zonno, M.</creator><creator>Peli, S.</creator><creator>Day, R. P.</creator><creator>Michiardi, M.</creator><creator>Schneider, M.</creator><creator>Zwartsenberg, B.</creator><creator>Nigge, P.</creator><creator>Zhong, R. D.</creator><creator>Schneeloch, J.</creator><creator>Gu, G. D.</creator><creator>Zhdanovich, S.</creator><creator>Mills, A. K.</creator><creator>Levy, G.</creator><creator>Jones, D. J.</creator><creator>Giannetti, C.</creator><creator>Damascelli, A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1652-9454</orcidid><orcidid>https://orcid.org/0000-0003-2664-9492</orcidid><orcidid>https://orcid.org/0000000326649492</orcidid><orcidid>https://orcid.org/0000000298863255</orcidid><orcidid>https://orcid.org/0000000316529454</orcidid></search><sort><creationdate>20180501</creationdate><title>Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence</title><author>Boschini, F. ; da Silva Neto, E. H. ; Razzoli, E. ; Zonno, M. ; Peli, S. ; Day, R. P. ; Michiardi, M. ; Schneider, M. ; Zwartsenberg, B. ; Nigge, P. ; Zhong, R. D. ; Schneeloch, J. ; Gu, G. D. ; Zhdanovich, S. ; Mills, A. K. ; Levy, G. ; Jones, D. J. ; Giannetti, C. ; Damascelli, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-b3d59656c2ad7df36b270f82be84697be770fe883feb9c93acdd6f57119637f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>140/125</topic><topic>639/766/119</topic><topic>639/766/119/1003</topic><topic>639/766/119/2795</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensates</topic><topic>Condensed Matter Physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Cuprates</topic><topic>Fluctuations</topic><topic>Fragility</topic><topic>Letter</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Phase coherence</topic><topic>Phase transitions</topic><topic>Photoelectric emission</topic><topic>Stiffness</topic><topic>Superconductivity</topic><topic>Thermalization (energy absorption)</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boschini, F.</creatorcontrib><creatorcontrib>da Silva Neto, E. H.</creatorcontrib><creatorcontrib>Razzoli, E.</creatorcontrib><creatorcontrib>Zonno, M.</creatorcontrib><creatorcontrib>Peli, S.</creatorcontrib><creatorcontrib>Day, R. P.</creatorcontrib><creatorcontrib>Michiardi, M.</creatorcontrib><creatorcontrib>Schneider, M.</creatorcontrib><creatorcontrib>Zwartsenberg, B.</creatorcontrib><creatorcontrib>Nigge, P.</creatorcontrib><creatorcontrib>Zhong, R. D.</creatorcontrib><creatorcontrib>Schneeloch, J.</creatorcontrib><creatorcontrib>Gu, G. D.</creatorcontrib><creatorcontrib>Zhdanovich, S.</creatorcontrib><creatorcontrib>Mills, A. K.</creatorcontrib><creatorcontrib>Levy, G.</creatorcontrib><creatorcontrib>Jones, D. J.</creatorcontrib><creatorcontrib>Giannetti, C.</creatorcontrib><creatorcontrib>Damascelli, A.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Emergent Superconductivity (CES)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boschini, F.</au><au>da Silva Neto, E. H.</au><au>Razzoli, E.</au><au>Zonno, M.</au><au>Peli, S.</au><au>Day, R. P.</au><au>Michiardi, M.</au><au>Schneider, M.</au><au>Zwartsenberg, B.</au><au>Nigge, P.</au><au>Zhong, R. D.</au><au>Schneeloch, J.</au><au>Gu, G. D.</au><au>Zhdanovich, S.</au><au>Mills, A. K.</au><au>Levy, G.</au><au>Jones, D. J.</au><au>Giannetti, C.</au><au>Damascelli, A.</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Emergent Superconductivity (CES)</aucorp><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>17</volume><issue>5</issue><spage>416</spage><epage>420</epage><pages>416-420</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically gated oxide interfaces 1 , 2 , ultracold Fermi atoms 3 , 4 and cuprate superconductors 5 , 6 , which are characterized by an intrinsically small phase stiffness, are paradigmatic examples where these tools are having a dramatic impact. Here we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bi 2 Sr 2 CaCu 2 O 8+ δ cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram. Pump–probe, time-resolved ARPES experiments with underdoped cuprates reveal the transient enhancement of the density of phase fluctuations, eventually leading to the collapse of superconductivity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29610487</pmid><doi>10.1038/s41563-018-0045-1</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1652-9454</orcidid><orcidid>https://orcid.org/0000-0003-2664-9492</orcidid><orcidid>https://orcid.org/0000000326649492</orcidid><orcidid>https://orcid.org/0000000298863255</orcidid><orcidid>https://orcid.org/0000000316529454</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2018-05, Vol.17 (5), p.416-420
issn 1476-1122
1476-4660
language eng
recordid cdi_osti_scitechconnect_1440896
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 140/125
639/766/119
639/766/119/1003
639/766/119/2795
Biomaterials
Chemistry and Materials Science
Condensates
Condensed Matter Physics
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Cuprates
Fluctuations
Fragility
Letter
Materials Science
Nanotechnology
Optical and Electronic Materials
Phase coherence
Phase transitions
Photoelectric emission
Stiffness
Superconductivity
Thermalization (energy absorption)
Variation
title Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A29%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collapse%20of%20superconductivity%20in%20cuprates%20via%20ultrafast%20quenching%20of%20phase%20coherence&rft.jtitle=Nature%20materials&rft.au=Boschini,%20F.&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Emergent%20Superconductivity%20(CES)&rft.date=2018-05-01&rft.volume=17&rft.issue=5&rft.spage=416&rft.epage=420&rft.pages=416-420&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-018-0045-1&rft_dat=%3Cproquest_osti_%3E2029590104%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2029590104&rft_id=info:pmid/29610487&rfr_iscdi=true