Spacecraft‐Charging Mitigation of a High‐Power Electron Beam Emitted by a Magnetospheric Spacecraft: Simple Theoretical Model for the Transient of the Spacecraft Potential
A spacecraft‐charging mitigation scheme necessary for the operation of a high‐power electron beam in the low‐density magnetosphere is analyzed. The scheme is based on a plasma contactor, that is, a high‐density charge‐neutral plasma emitted prior to and during beam emission and its ability to emit h...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Space physics 2018-08, Vol.123 (8), p.6424-6442 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6442 |
---|---|
container_issue | 8 |
container_start_page | 6424 |
container_title | Journal of geophysical research. Space physics |
container_volume | 123 |
creator | Lucco Castello, F. Delzanno, G. L. Borovsky, J. E. Miars, G. Leon, O. Gilchrist, B. E. |
description | A spacecraft‐charging mitigation scheme necessary for the operation of a high‐power electron beam in the low‐density magnetosphere is analyzed. The scheme is based on a plasma contactor, that is, a high‐density charge‐neutral plasma emitted prior to and during beam emission and its ability to emit high ion currents without strong space‐charge limitations. A simple theoretical model for the transient of the spacecraft potential and contactor expansion during beam emission is presented. The model focuses on the contactor ion dynamics and is valid in the limit when the ion contactor current is equal to the beam current. The model is found in very good agreement with particle‐in‐cell simulations over a large parametric study that varies the initial expansion time of the contactor, the contactor current, and the ion mass. The model highlights the physics of the spacecraft‐charging mitigation scheme, indicating that the most important part of the dynamics is the evolution of the outermost ion front, which is pushed away by the charge accumulated in the system by the beam. The model can be also used to estimate the long‐time evolution of the spacecraft potential. For a short contactor expansion (0.3‐ or 0.6‐ms helium plasma or 0.8‐ms argon plasma, both with 1‐mA current) it yields a peak spacecraft potential of the order of 1–3 kV. This implies that a 1‐mA relativistic electron beam would be easily emitted by the spacecraft.
Key Points
A theoretical model of spacecraft‐charging mitigation for the emission of a relativistic electron beam by a magnetospheric spacecraft is presented
The model is in good agreement with particle‐in‐cell simulations
The model predicts the long‐time value of the spacecraft potential, indicating that a relativistic beam would be easily emitted |
doi_str_mv | 10.1029/2017JA024926 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1440475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112722668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4158-314ed1f38275f00e78a399e7a46e8990683e88326933663144a25571eb65f2433</originalsourceid><addsrcrecordid>eNp9kc1OGzEQx62qlYpSbjyABVdC_bVem1saBSgiAvFxtowzu2u0WW9tI5Qbj8Cb9J36JHWUVvTUucxo_r_50iB0QMkJJUx_ZYTWlzPChGbyA9pjVOqpFoR9_BtzRT6j_ZSeSDFVUrTaQz_vRuvARdvkX69v887G1g8tXvrsW5t9GHBosMUXvu2KfhNeIOJFDy7HIn0Du8aLtc8ZVvhxU7ilbQfIIY0dRO_we_NTfOfXYw_4voMQIXtne7wMK-hxEyLOXVGiHZKHIW9HbhPv1fgm5CJ4239BnxrbJ9j_4yfo4WxxP7-YXl2ff5_PrqZO0EpNORWwog1XrK4aQqBWlmsNtRUSlNZEKg5KcSY151IWWlhWVTWFR1k1THA-QYe7viFlb5LzGVznwjCU003BiairAh3toDGGH8-QsnkKz3EoexlGKasZk2XQBB3vKBdDShEaM0a_tnFjKDHb15l_X1dwvsNffA-b_7Lm8vx2VglOFf8NlgGbjw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112722668</pqid></control><display><type>article</type><title>Spacecraft‐Charging Mitigation of a High‐Power Electron Beam Emitted by a Magnetospheric Spacecraft: Simple Theoretical Model for the Transient of the Spacecraft Potential</title><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Lucco Castello, F. ; Delzanno, G. L. ; Borovsky, J. E. ; Miars, G. ; Leon, O. ; Gilchrist, B. E.</creator><creatorcontrib>Lucco Castello, F. ; Delzanno, G. L. ; Borovsky, J. E. ; Miars, G. ; Leon, O. ; Gilchrist, B. E. ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>A spacecraft‐charging mitigation scheme necessary for the operation of a high‐power electron beam in the low‐density magnetosphere is analyzed. The scheme is based on a plasma contactor, that is, a high‐density charge‐neutral plasma emitted prior to and during beam emission and its ability to emit high ion currents without strong space‐charge limitations. A simple theoretical model for the transient of the spacecraft potential and contactor expansion during beam emission is presented. The model focuses on the contactor ion dynamics and is valid in the limit when the ion contactor current is equal to the beam current. The model is found in very good agreement with particle‐in‐cell simulations over a large parametric study that varies the initial expansion time of the contactor, the contactor current, and the ion mass. The model highlights the physics of the spacecraft‐charging mitigation scheme, indicating that the most important part of the dynamics is the evolution of the outermost ion front, which is pushed away by the charge accumulated in the system by the beam. The model can be also used to estimate the long‐time evolution of the spacecraft potential. For a short contactor expansion (0.3‐ or 0.6‐ms helium plasma or 0.8‐ms argon plasma, both with 1‐mA current) it yields a peak spacecraft potential of the order of 1–3 kV. This implies that a 1‐mA relativistic electron beam would be easily emitted by the spacecraft.
Key Points
A theoretical model of spacecraft‐charging mitigation for the emission of a relativistic electron beam by a magnetospheric spacecraft is presented
The model is in good agreement with particle‐in‐cell simulations
The model predicts the long‐time value of the spacecraft potential, indicating that a relativistic beam would be easily emitted</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2017JA024926</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Argon plasma ; ASTRONOMY AND ASTROPHYSICS ; Charge density ; Charging ; Computer simulation ; Electron beams ; Emission ; Emissions ; Evolution ; Helium ; Helium plasma ; Ion currents ; Ion dynamics ; Magnetosphere ; Magnetospheres ; Magnetosphere‐Ionosphere coupling ; Particle‐In‐Cell simulations ; Plasma ; Plasma contactors ; Relativistic electron beams ; Spacecraft ; Spacecraft charging</subject><ispartof>Journal of geophysical research. Space physics, 2018-08, Vol.123 (8), p.6424-6442</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4158-314ed1f38275f00e78a399e7a46e8990683e88326933663144a25571eb65f2433</citedby><cites>FETCH-LOGICAL-c4158-314ed1f38275f00e78a399e7a46e8990683e88326933663144a25571eb65f2433</cites><orcidid>0000-0003-1871-6675 ; 0000-0002-2325-3348 ; 0000-0002-7310-3508 ; 0000-0002-7030-2683 ; 0000-0002-2370-2991 ; 0000000318716675 ; 0000000270302683 ; 0000000223702991 ; 0000000273103508 ; 0000000223253348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2017JA024926$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2017JA024926$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,782,786,887,1419,1435,27931,27932,45581,45582,46416,46840</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1440475$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lucco Castello, F.</creatorcontrib><creatorcontrib>Delzanno, G. L.</creatorcontrib><creatorcontrib>Borovsky, J. E.</creatorcontrib><creatorcontrib>Miars, G.</creatorcontrib><creatorcontrib>Leon, O.</creatorcontrib><creatorcontrib>Gilchrist, B. E.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Spacecraft‐Charging Mitigation of a High‐Power Electron Beam Emitted by a Magnetospheric Spacecraft: Simple Theoretical Model for the Transient of the Spacecraft Potential</title><title>Journal of geophysical research. Space physics</title><description>A spacecraft‐charging mitigation scheme necessary for the operation of a high‐power electron beam in the low‐density magnetosphere is analyzed. The scheme is based on a plasma contactor, that is, a high‐density charge‐neutral plasma emitted prior to and during beam emission and its ability to emit high ion currents without strong space‐charge limitations. A simple theoretical model for the transient of the spacecraft potential and contactor expansion during beam emission is presented. The model focuses on the contactor ion dynamics and is valid in the limit when the ion contactor current is equal to the beam current. The model is found in very good agreement with particle‐in‐cell simulations over a large parametric study that varies the initial expansion time of the contactor, the contactor current, and the ion mass. The model highlights the physics of the spacecraft‐charging mitigation scheme, indicating that the most important part of the dynamics is the evolution of the outermost ion front, which is pushed away by the charge accumulated in the system by the beam. The model can be also used to estimate the long‐time evolution of the spacecraft potential. For a short contactor expansion (0.3‐ or 0.6‐ms helium plasma or 0.8‐ms argon plasma, both with 1‐mA current) it yields a peak spacecraft potential of the order of 1–3 kV. This implies that a 1‐mA relativistic electron beam would be easily emitted by the spacecraft.
Key Points
A theoretical model of spacecraft‐charging mitigation for the emission of a relativistic electron beam by a magnetospheric spacecraft is presented
The model is in good agreement with particle‐in‐cell simulations
The model predicts the long‐time value of the spacecraft potential, indicating that a relativistic beam would be easily emitted</description><subject>Argon plasma</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Charge density</subject><subject>Charging</subject><subject>Computer simulation</subject><subject>Electron beams</subject><subject>Emission</subject><subject>Emissions</subject><subject>Evolution</subject><subject>Helium</subject><subject>Helium plasma</subject><subject>Ion currents</subject><subject>Ion dynamics</subject><subject>Magnetosphere</subject><subject>Magnetospheres</subject><subject>Magnetosphere‐Ionosphere coupling</subject><subject>Particle‐In‐Cell simulations</subject><subject>Plasma</subject><subject>Plasma contactors</subject><subject>Relativistic electron beams</subject><subject>Spacecraft</subject><subject>Spacecraft charging</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc1OGzEQx62qlYpSbjyABVdC_bVem1saBSgiAvFxtowzu2u0WW9tI5Qbj8Cb9J36JHWUVvTUucxo_r_50iB0QMkJJUx_ZYTWlzPChGbyA9pjVOqpFoR9_BtzRT6j_ZSeSDFVUrTaQz_vRuvARdvkX69v887G1g8tXvrsW5t9GHBosMUXvu2KfhNeIOJFDy7HIn0Du8aLtc8ZVvhxU7ilbQfIIY0dRO_we_NTfOfXYw_4voMQIXtne7wMK-hxEyLOXVGiHZKHIW9HbhPv1fgm5CJ4239BnxrbJ9j_4yfo4WxxP7-YXl2ff5_PrqZO0EpNORWwog1XrK4aQqBWlmsNtRUSlNZEKg5KcSY151IWWlhWVTWFR1k1THA-QYe7viFlb5LzGVznwjCU003BiairAh3toDGGH8-QsnkKz3EoexlGKasZk2XQBB3vKBdDShEaM0a_tnFjKDHb15l_X1dwvsNffA-b_7Lm8vx2VglOFf8NlgGbjw</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Lucco Castello, F.</creator><creator>Delzanno, G. L.</creator><creator>Borovsky, J. E.</creator><creator>Miars, G.</creator><creator>Leon, O.</creator><creator>Gilchrist, B. E.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1871-6675</orcidid><orcidid>https://orcid.org/0000-0002-2325-3348</orcidid><orcidid>https://orcid.org/0000-0002-7310-3508</orcidid><orcidid>https://orcid.org/0000-0002-7030-2683</orcidid><orcidid>https://orcid.org/0000-0002-2370-2991</orcidid><orcidid>https://orcid.org/0000000318716675</orcidid><orcidid>https://orcid.org/0000000270302683</orcidid><orcidid>https://orcid.org/0000000223702991</orcidid><orcidid>https://orcid.org/0000000273103508</orcidid><orcidid>https://orcid.org/0000000223253348</orcidid></search><sort><creationdate>201808</creationdate><title>Spacecraft‐Charging Mitigation of a High‐Power Electron Beam Emitted by a Magnetospheric Spacecraft: Simple Theoretical Model for the Transient of the Spacecraft Potential</title><author>Lucco Castello, F. ; Delzanno, G. L. ; Borovsky, J. E. ; Miars, G. ; Leon, O. ; Gilchrist, B. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4158-314ed1f38275f00e78a399e7a46e8990683e88326933663144a25571eb65f2433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Argon plasma</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Charge density</topic><topic>Charging</topic><topic>Computer simulation</topic><topic>Electron beams</topic><topic>Emission</topic><topic>Emissions</topic><topic>Evolution</topic><topic>Helium</topic><topic>Helium plasma</topic><topic>Ion currents</topic><topic>Ion dynamics</topic><topic>Magnetosphere</topic><topic>Magnetospheres</topic><topic>Magnetosphere‐Ionosphere coupling</topic><topic>Particle‐In‐Cell simulations</topic><topic>Plasma</topic><topic>Plasma contactors</topic><topic>Relativistic electron beams</topic><topic>Spacecraft</topic><topic>Spacecraft charging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucco Castello, F.</creatorcontrib><creatorcontrib>Delzanno, G. L.</creatorcontrib><creatorcontrib>Borovsky, J. E.</creatorcontrib><creatorcontrib>Miars, G.</creatorcontrib><creatorcontrib>Leon, O.</creatorcontrib><creatorcontrib>Gilchrist, B. E.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucco Castello, F.</au><au>Delzanno, G. L.</au><au>Borovsky, J. E.</au><au>Miars, G.</au><au>Leon, O.</au><au>Gilchrist, B. E.</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spacecraft‐Charging Mitigation of a High‐Power Electron Beam Emitted by a Magnetospheric Spacecraft: Simple Theoretical Model for the Transient of the Spacecraft Potential</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2018-08</date><risdate>2018</risdate><volume>123</volume><issue>8</issue><spage>6424</spage><epage>6442</epage><pages>6424-6442</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>A spacecraft‐charging mitigation scheme necessary for the operation of a high‐power electron beam in the low‐density magnetosphere is analyzed. The scheme is based on a plasma contactor, that is, a high‐density charge‐neutral plasma emitted prior to and during beam emission and its ability to emit high ion currents without strong space‐charge limitations. A simple theoretical model for the transient of the spacecraft potential and contactor expansion during beam emission is presented. The model focuses on the contactor ion dynamics and is valid in the limit when the ion contactor current is equal to the beam current. The model is found in very good agreement with particle‐in‐cell simulations over a large parametric study that varies the initial expansion time of the contactor, the contactor current, and the ion mass. The model highlights the physics of the spacecraft‐charging mitigation scheme, indicating that the most important part of the dynamics is the evolution of the outermost ion front, which is pushed away by the charge accumulated in the system by the beam. The model can be also used to estimate the long‐time evolution of the spacecraft potential. For a short contactor expansion (0.3‐ or 0.6‐ms helium plasma or 0.8‐ms argon plasma, both with 1‐mA current) it yields a peak spacecraft potential of the order of 1–3 kV. This implies that a 1‐mA relativistic electron beam would be easily emitted by the spacecraft.
Key Points
A theoretical model of spacecraft‐charging mitigation for the emission of a relativistic electron beam by a magnetospheric spacecraft is presented
The model is in good agreement with particle‐in‐cell simulations
The model predicts the long‐time value of the spacecraft potential, indicating that a relativistic beam would be easily emitted</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2017JA024926</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1871-6675</orcidid><orcidid>https://orcid.org/0000-0002-2325-3348</orcidid><orcidid>https://orcid.org/0000-0002-7310-3508</orcidid><orcidid>https://orcid.org/0000-0002-7030-2683</orcidid><orcidid>https://orcid.org/0000-0002-2370-2991</orcidid><orcidid>https://orcid.org/0000000318716675</orcidid><orcidid>https://orcid.org/0000000270302683</orcidid><orcidid>https://orcid.org/0000000223702991</orcidid><orcidid>https://orcid.org/0000000273103508</orcidid><orcidid>https://orcid.org/0000000223253348</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9380 |
ispartof | Journal of geophysical research. Space physics, 2018-08, Vol.123 (8), p.6424-6442 |
issn | 2169-9380 2169-9402 |
language | eng |
recordid | cdi_osti_scitechconnect_1440475 |
source | Access via Wiley Online Library; Wiley Online Library (Open Access Collection) |
subjects | Argon plasma ASTRONOMY AND ASTROPHYSICS Charge density Charging Computer simulation Electron beams Emission Emissions Evolution Helium Helium plasma Ion currents Ion dynamics Magnetosphere Magnetospheres Magnetosphere‐Ionosphere coupling Particle‐In‐Cell simulations Plasma Plasma contactors Relativistic electron beams Spacecraft Spacecraft charging |
title | Spacecraft‐Charging Mitigation of a High‐Power Electron Beam Emitted by a Magnetospheric Spacecraft: Simple Theoretical Model for the Transient of the Spacecraft Potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T23%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spacecraft%E2%80%90Charging%20Mitigation%20of%20a%20High%E2%80%90Power%20Electron%20Beam%20Emitted%20by%20a%20Magnetospheric%20Spacecraft:%20Simple%20Theoretical%20Model%20for%20the%20Transient%20of%20the%20Spacecraft%20Potential&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Lucco%C2%A0Castello,%20F.&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2018-08&rft.volume=123&rft.issue=8&rft.spage=6424&rft.epage=6442&rft.pages=6424-6442&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2017JA024926&rft_dat=%3Cproquest_osti_%3E2112722668%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112722668&rft_id=info:pmid/&rfr_iscdi=true |