Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled CESM1(WACCM)

We present new insights into the evolution and interactions of stratospheric aerosol using an updated version of the Whole Atmosphere Community Climate Model (WACCM). Improved horizontal resolution, dynamics, and chemistry now produce an internally generated quasi‐biennial oscillation and significan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2017-12, Vol.122 (23), p.13,061-13,078
Hauptverfasser: Mills, Michael J., Richter, Jadwiga H., Tilmes, Simone, Kravitz, Ben, MacMartin, Douglas G., Glanville, Anne A., Tribbia, Joseph J., Lamarque, Jean‐François, Vitt, Francis, Schmidt, Anja, Gettelman, Andrew, Hannay, Cecile, Bacmeister, Julio T., Kinnison, Douglas E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13,078
container_issue 23
container_start_page 13,061
container_title Journal of geophysical research. Atmospheres
container_volume 122
creator Mills, Michael J.
Richter, Jadwiga H.
Tilmes, Simone
Kravitz, Ben
MacMartin, Douglas G.
Glanville, Anne A.
Tribbia, Joseph J.
Lamarque, Jean‐François
Vitt, Francis
Schmidt, Anja
Gettelman, Andrew
Hannay, Cecile
Bacmeister, Julio T.
Kinnison, Douglas E.
description We present new insights into the evolution and interactions of stratospheric aerosol using an updated version of the Whole Atmosphere Community Climate Model (WACCM). Improved horizontal resolution, dynamics, and chemistry now produce an internally generated quasi‐biennial oscillation and significant improvements to stratospheric temperatures and ozone compared to observations. We present a validation of WACCM column ozone and climate calculations against observations. The prognostic treatment of stratospheric sulfate aerosols accurately represents the evolution of stratospheric aerosol optical depth and perturbations to solar and longwave radiation following the June 1991 eruption of Mount Pinatubo. We confirm the inclusion of interactive OH chemistry as an important factor in the formation and initial distribution of aerosol following large inputs of sulfur dioxide (SO2) to the stratosphere. We calculate that depletion of OH levels within the dense SO2 cloud in the first weeks following the Pinatubo eruption significantly prolonged the average initial e‐folding decay time for SO2 oxidation to 47 days. Previous observational and model studies showing a 30 day decay time have not accounted for the large (30–55%) losses of SO2 on ash and ice within 7–9 days posteruption and have not correctly accounted for OH depletion. We examine the variability of aerosol evolution in free‐running climate simulations due to meteorology, with comparison to simulations nudged with specified dynamics. We assess calculated impacts of volcanic aerosols on ozone loss with comparisons to observations. The completeness of the chemistry, dynamics, and aerosol microphysics in WACCM qualify it for studies of stratospheric sulfate aerosol geoengineering. Plain Language Summary Stratospheric aerosols form after volcanoes inject SO2 into the stratosphere, and can cool global surface temperatures. A new capability for simulating stratospheric aerosols from SO2 injections in the Whole Atmosphere Community Climate Model is shown to reproduce well observed climate and chemistry responses. The ability of the model to calculate accurately the reductions in sunlight and losses of ozone that have been observed following historical eruptions in the satellite era gives strong confidence in the model's ability to simulate such responses to potential future deliberate injections of SO2 to offset global warming. Such responses to geoengineering are presented in a series of companion papers. Key Poi
doi_str_mv 10.1002/2017JD027006
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1439705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1984771345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4384-1f77df96deb55b98e49206d91f4d436901f4e3e3a8e2ce7d38360e390d1aeebe3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuBFFBT15g8IelGwmmyym82xbFs_sAitoreQZmdpdLtZk6zSf2-0Ip6cy8zhYZh5k-SI4AuCcXqZYsJvRzjlGOdbyV5KcjEohMi3f2f-vJscev-CYxWYsoztJa8zVRkVzDsg1VaoXMLKaNWgGfjOth5QsOimDeCU_kbz4FSwvluCMxrN-6ZWAdAQnPW28ci0aNI3zRqVtu8aiAvH8yk5fRqW5fTsINmpVePh8KfvJ4-T8UN5Pbi7v7oph3cDzWjBBqTmvKpFXsEiyxaiACZSnFeC1KxiNBc4DkCBqgJSDbyiBc0xUIErogAWQPeT481e64ORXpsAeqlt24IOkjAqOM4iOtmgztm3HnyQL7Z3bbxLElEwzkkMKKrzjdLxQe-glp0zK-XWkmD5Fbv8G3vkdMM_TAPrf628vZqNMpamjH4CI4iCCA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984771345</pqid></control><display><type>article</type><title>Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled CESM1(WACCM)</title><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Mills, Michael J. ; Richter, Jadwiga H. ; Tilmes, Simone ; Kravitz, Ben ; MacMartin, Douglas G. ; Glanville, Anne A. ; Tribbia, Joseph J. ; Lamarque, Jean‐François ; Vitt, Francis ; Schmidt, Anja ; Gettelman, Andrew ; Hannay, Cecile ; Bacmeister, Julio T. ; Kinnison, Douglas E.</creator><creatorcontrib>Mills, Michael J. ; Richter, Jadwiga H. ; Tilmes, Simone ; Kravitz, Ben ; MacMartin, Douglas G. ; Glanville, Anne A. ; Tribbia, Joseph J. ; Lamarque, Jean‐François ; Vitt, Francis ; Schmidt, Anja ; Gettelman, Andrew ; Hannay, Cecile ; Bacmeister, Julio T. ; Kinnison, Douglas E. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>We present new insights into the evolution and interactions of stratospheric aerosol using an updated version of the Whole Atmosphere Community Climate Model (WACCM). Improved horizontal resolution, dynamics, and chemistry now produce an internally generated quasi‐biennial oscillation and significant improvements to stratospheric temperatures and ozone compared to observations. We present a validation of WACCM column ozone and climate calculations against observations. The prognostic treatment of stratospheric sulfate aerosols accurately represents the evolution of stratospheric aerosol optical depth and perturbations to solar and longwave radiation following the June 1991 eruption of Mount Pinatubo. We confirm the inclusion of interactive OH chemistry as an important factor in the formation and initial distribution of aerosol following large inputs of sulfur dioxide (SO2) to the stratosphere. We calculate that depletion of OH levels within the dense SO2 cloud in the first weeks following the Pinatubo eruption significantly prolonged the average initial e‐folding decay time for SO2 oxidation to 47 days. Previous observational and model studies showing a 30 day decay time have not accounted for the large (30–55%) losses of SO2 on ash and ice within 7–9 days posteruption and have not correctly accounted for OH depletion. We examine the variability of aerosol evolution in free‐running climate simulations due to meteorology, with comparison to simulations nudged with specified dynamics. We assess calculated impacts of volcanic aerosols on ozone loss with comparisons to observations. The completeness of the chemistry, dynamics, and aerosol microphysics in WACCM qualify it for studies of stratospheric sulfate aerosol geoengineering. Plain Language Summary Stratospheric aerosols form after volcanoes inject SO2 into the stratosphere, and can cool global surface temperatures. A new capability for simulating stratospheric aerosols from SO2 injections in the Whole Atmosphere Community Climate Model is shown to reproduce well observed climate and chemistry responses. The ability of the model to calculate accurately the reductions in sunlight and losses of ozone that have been observed following historical eruptions in the satellite era gives strong confidence in the model's ability to simulate such responses to potential future deliberate injections of SO2 to offset global warming. Such responses to geoengineering are presented in a series of companion papers. Key Points WACCM accurately calculates radiative and chemical responses to stratospheric sulfate, validating its use for geoengineering studies Interactive OH chemistry is key to the study of aerosol formation from large stratospheric SO2 perturbations OH depletion extended the calculated average initial e‐folding time for oxidation of SO2 from the 1991 Pinatubo eruption by &gt;50%</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2017JD027006</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Aerosol effects ; Aerosol formation ; Aerosol optical depth ; Aerosols ; Atmosphere ; Atmospheric chemistry ; Chemistry ; Climate ; Climate change ; climate modeling ; Climate models ; Communities ; Computer simulation ; Decay ; Depletion ; Dynamics ; ENVIRONMENTAL SCIENCES ; Eruptions ; Evolution ; Folding ; Geoengineering ; Geophysics ; Global temperatures ; Global warming ; Interactions ; Long wave radiation ; Meteorology ; Microphysics ; Optical analysis ; Oxidation ; Ozone ; Perturbations ; Quasi-biennial oscillation ; Radiation ; Satellites ; Stratosphere ; Stratospheric aerosols ; stratospheric ozone ; Stratospheric sulfate ; Stratospheric temperatures ; Studies ; Sulfate aerosols ; Sulfates ; Sulfur ; Sulfur dioxide ; Sulphur ; Surface temperature ; Volcanic activity ; Volcanic aerosols ; Volcanic eruption effects ; Volcanic eruptions ; Volcanoes</subject><ispartof>Journal of geophysical research. Atmospheres, 2017-12, Vol.122 (23), p.13,061-13,078</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4384-1f77df96deb55b98e49206d91f4d436901f4e3e3a8e2ce7d38360e390d1aeebe3</citedby><cites>FETCH-LOGICAL-c4384-1f77df96deb55b98e49206d91f4d436901f4e3e3a8e2ce7d38360e390d1aeebe3</cites><orcidid>0000-0002-5487-1229 ; 0000-0002-8284-2599 ; 0000-0001-8848-975X ; 0000-0002-3418-0834 ; 0000-0002-8684-214X ; 0000-0001-7048-0781 ; 0000-0003-1639-9688 ; 0000-0001-8759-2843 ; 0000-0003-1987-9417 ; 0000-0002-4225-5074 ; 0000-0002-6557-3569 ; 0000-0002-8054-1346 ; 0000-0001-6318-1150 ; 0000-0001-6363-6151 ; 0000000282842599 ; 0000000265573569 ; 0000000280541346 ; 0000000254871229 ; 000000028684214X ; 0000000187592843 ; 0000000163181150 ; 0000000319879417 ; 0000000242255074 ; 0000000316399688 ; 0000000234180834 ; 0000000163636151 ; 000000018848975X ; 0000000170480781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JD027006$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JD027006$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,1434,27929,27930,45579,45580,46414,46838</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1439705$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mills, Michael J.</creatorcontrib><creatorcontrib>Richter, Jadwiga H.</creatorcontrib><creatorcontrib>Tilmes, Simone</creatorcontrib><creatorcontrib>Kravitz, Ben</creatorcontrib><creatorcontrib>MacMartin, Douglas G.</creatorcontrib><creatorcontrib>Glanville, Anne A.</creatorcontrib><creatorcontrib>Tribbia, Joseph J.</creatorcontrib><creatorcontrib>Lamarque, Jean‐François</creatorcontrib><creatorcontrib>Vitt, Francis</creatorcontrib><creatorcontrib>Schmidt, Anja</creatorcontrib><creatorcontrib>Gettelman, Andrew</creatorcontrib><creatorcontrib>Hannay, Cecile</creatorcontrib><creatorcontrib>Bacmeister, Julio T.</creatorcontrib><creatorcontrib>Kinnison, Douglas E.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled CESM1(WACCM)</title><title>Journal of geophysical research. Atmospheres</title><description>We present new insights into the evolution and interactions of stratospheric aerosol using an updated version of the Whole Atmosphere Community Climate Model (WACCM). Improved horizontal resolution, dynamics, and chemistry now produce an internally generated quasi‐biennial oscillation and significant improvements to stratospheric temperatures and ozone compared to observations. We present a validation of WACCM column ozone and climate calculations against observations. The prognostic treatment of stratospheric sulfate aerosols accurately represents the evolution of stratospheric aerosol optical depth and perturbations to solar and longwave radiation following the June 1991 eruption of Mount Pinatubo. We confirm the inclusion of interactive OH chemistry as an important factor in the formation and initial distribution of aerosol following large inputs of sulfur dioxide (SO2) to the stratosphere. We calculate that depletion of OH levels within the dense SO2 cloud in the first weeks following the Pinatubo eruption significantly prolonged the average initial e‐folding decay time for SO2 oxidation to 47 days. Previous observational and model studies showing a 30 day decay time have not accounted for the large (30–55%) losses of SO2 on ash and ice within 7–9 days posteruption and have not correctly accounted for OH depletion. We examine the variability of aerosol evolution in free‐running climate simulations due to meteorology, with comparison to simulations nudged with specified dynamics. We assess calculated impacts of volcanic aerosols on ozone loss with comparisons to observations. The completeness of the chemistry, dynamics, and aerosol microphysics in WACCM qualify it for studies of stratospheric sulfate aerosol geoengineering. Plain Language Summary Stratospheric aerosols form after volcanoes inject SO2 into the stratosphere, and can cool global surface temperatures. A new capability for simulating stratospheric aerosols from SO2 injections in the Whole Atmosphere Community Climate Model is shown to reproduce well observed climate and chemistry responses. The ability of the model to calculate accurately the reductions in sunlight and losses of ozone that have been observed following historical eruptions in the satellite era gives strong confidence in the model's ability to simulate such responses to potential future deliberate injections of SO2 to offset global warming. Such responses to geoengineering are presented in a series of companion papers. Key Points WACCM accurately calculates radiative and chemical responses to stratospheric sulfate, validating its use for geoengineering studies Interactive OH chemistry is key to the study of aerosol formation from large stratospheric SO2 perturbations OH depletion extended the calculated average initial e‐folding time for oxidation of SO2 from the 1991 Pinatubo eruption by &gt;50%</description><subject>Aerosol effects</subject><subject>Aerosol formation</subject><subject>Aerosol optical depth</subject><subject>Aerosols</subject><subject>Atmosphere</subject><subject>Atmospheric chemistry</subject><subject>Chemistry</subject><subject>Climate</subject><subject>Climate change</subject><subject>climate modeling</subject><subject>Climate models</subject><subject>Communities</subject><subject>Computer simulation</subject><subject>Decay</subject><subject>Depletion</subject><subject>Dynamics</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Eruptions</subject><subject>Evolution</subject><subject>Folding</subject><subject>Geoengineering</subject><subject>Geophysics</subject><subject>Global temperatures</subject><subject>Global warming</subject><subject>Interactions</subject><subject>Long wave radiation</subject><subject>Meteorology</subject><subject>Microphysics</subject><subject>Optical analysis</subject><subject>Oxidation</subject><subject>Ozone</subject><subject>Perturbations</subject><subject>Quasi-biennial oscillation</subject><subject>Radiation</subject><subject>Satellites</subject><subject>Stratosphere</subject><subject>Stratospheric aerosols</subject><subject>stratospheric ozone</subject><subject>Stratospheric sulfate</subject><subject>Stratospheric temperatures</subject><subject>Studies</subject><subject>Sulfate aerosols</subject><subject>Sulfates</subject><subject>Sulfur</subject><subject>Sulfur dioxide</subject><subject>Sulphur</subject><subject>Surface temperature</subject><subject>Volcanic activity</subject><subject>Volcanic aerosols</subject><subject>Volcanic eruption effects</subject><subject>Volcanic eruptions</subject><subject>Volcanoes</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuBFFBT15g8IelGwmmyym82xbFs_sAitoreQZmdpdLtZk6zSf2-0Ip6cy8zhYZh5k-SI4AuCcXqZYsJvRzjlGOdbyV5KcjEohMi3f2f-vJscev-CYxWYsoztJa8zVRkVzDsg1VaoXMLKaNWgGfjOth5QsOimDeCU_kbz4FSwvluCMxrN-6ZWAdAQnPW28ci0aNI3zRqVtu8aiAvH8yk5fRqW5fTsINmpVePh8KfvJ4-T8UN5Pbi7v7oph3cDzWjBBqTmvKpFXsEiyxaiACZSnFeC1KxiNBc4DkCBqgJSDbyiBc0xUIErogAWQPeT481e64ORXpsAeqlt24IOkjAqOM4iOtmgztm3HnyQL7Z3bbxLElEwzkkMKKrzjdLxQe-glp0zK-XWkmD5Fbv8G3vkdMM_TAPrf628vZqNMpamjH4CI4iCCA</recordid><startdate>20171216</startdate><enddate>20171216</enddate><creator>Mills, Michael J.</creator><creator>Richter, Jadwiga H.</creator><creator>Tilmes, Simone</creator><creator>Kravitz, Ben</creator><creator>MacMartin, Douglas G.</creator><creator>Glanville, Anne A.</creator><creator>Tribbia, Joseph J.</creator><creator>Lamarque, Jean‐François</creator><creator>Vitt, Francis</creator><creator>Schmidt, Anja</creator><creator>Gettelman, Andrew</creator><creator>Hannay, Cecile</creator><creator>Bacmeister, Julio T.</creator><creator>Kinnison, Douglas E.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5487-1229</orcidid><orcidid>https://orcid.org/0000-0002-8284-2599</orcidid><orcidid>https://orcid.org/0000-0001-8848-975X</orcidid><orcidid>https://orcid.org/0000-0002-3418-0834</orcidid><orcidid>https://orcid.org/0000-0002-8684-214X</orcidid><orcidid>https://orcid.org/0000-0001-7048-0781</orcidid><orcidid>https://orcid.org/0000-0003-1639-9688</orcidid><orcidid>https://orcid.org/0000-0001-8759-2843</orcidid><orcidid>https://orcid.org/0000-0003-1987-9417</orcidid><orcidid>https://orcid.org/0000-0002-4225-5074</orcidid><orcidid>https://orcid.org/0000-0002-6557-3569</orcidid><orcidid>https://orcid.org/0000-0002-8054-1346</orcidid><orcidid>https://orcid.org/0000-0001-6318-1150</orcidid><orcidid>https://orcid.org/0000-0001-6363-6151</orcidid><orcidid>https://orcid.org/0000000282842599</orcidid><orcidid>https://orcid.org/0000000265573569</orcidid><orcidid>https://orcid.org/0000000280541346</orcidid><orcidid>https://orcid.org/0000000254871229</orcidid><orcidid>https://orcid.org/000000028684214X</orcidid><orcidid>https://orcid.org/0000000187592843</orcidid><orcidid>https://orcid.org/0000000163181150</orcidid><orcidid>https://orcid.org/0000000319879417</orcidid><orcidid>https://orcid.org/0000000242255074</orcidid><orcidid>https://orcid.org/0000000316399688</orcidid><orcidid>https://orcid.org/0000000234180834</orcidid><orcidid>https://orcid.org/0000000163636151</orcidid><orcidid>https://orcid.org/000000018848975X</orcidid><orcidid>https://orcid.org/0000000170480781</orcidid></search><sort><creationdate>20171216</creationdate><title>Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled CESM1(WACCM)</title><author>Mills, Michael J. ; Richter, Jadwiga H. ; Tilmes, Simone ; Kravitz, Ben ; MacMartin, Douglas G. ; Glanville, Anne A. ; Tribbia, Joseph J. ; Lamarque, Jean‐François ; Vitt, Francis ; Schmidt, Anja ; Gettelman, Andrew ; Hannay, Cecile ; Bacmeister, Julio T. ; Kinnison, Douglas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4384-1f77df96deb55b98e49206d91f4d436901f4e3e3a8e2ce7d38360e390d1aeebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerosol effects</topic><topic>Aerosol formation</topic><topic>Aerosol optical depth</topic><topic>Aerosols</topic><topic>Atmosphere</topic><topic>Atmospheric chemistry</topic><topic>Chemistry</topic><topic>Climate</topic><topic>Climate change</topic><topic>climate modeling</topic><topic>Climate models</topic><topic>Communities</topic><topic>Computer simulation</topic><topic>Decay</topic><topic>Depletion</topic><topic>Dynamics</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Eruptions</topic><topic>Evolution</topic><topic>Folding</topic><topic>Geoengineering</topic><topic>Geophysics</topic><topic>Global temperatures</topic><topic>Global warming</topic><topic>Interactions</topic><topic>Long wave radiation</topic><topic>Meteorology</topic><topic>Microphysics</topic><topic>Optical analysis</topic><topic>Oxidation</topic><topic>Ozone</topic><topic>Perturbations</topic><topic>Quasi-biennial oscillation</topic><topic>Radiation</topic><topic>Satellites</topic><topic>Stratosphere</topic><topic>Stratospheric aerosols</topic><topic>stratospheric ozone</topic><topic>Stratospheric sulfate</topic><topic>Stratospheric temperatures</topic><topic>Studies</topic><topic>Sulfate aerosols</topic><topic>Sulfates</topic><topic>Sulfur</topic><topic>Sulfur dioxide</topic><topic>Sulphur</topic><topic>Surface temperature</topic><topic>Volcanic activity</topic><topic>Volcanic aerosols</topic><topic>Volcanic eruption effects</topic><topic>Volcanic eruptions</topic><topic>Volcanoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mills, Michael J.</creatorcontrib><creatorcontrib>Richter, Jadwiga H.</creatorcontrib><creatorcontrib>Tilmes, Simone</creatorcontrib><creatorcontrib>Kravitz, Ben</creatorcontrib><creatorcontrib>MacMartin, Douglas G.</creatorcontrib><creatorcontrib>Glanville, Anne A.</creatorcontrib><creatorcontrib>Tribbia, Joseph J.</creatorcontrib><creatorcontrib>Lamarque, Jean‐François</creatorcontrib><creatorcontrib>Vitt, Francis</creatorcontrib><creatorcontrib>Schmidt, Anja</creatorcontrib><creatorcontrib>Gettelman, Andrew</creatorcontrib><creatorcontrib>Hannay, Cecile</creatorcontrib><creatorcontrib>Bacmeister, Julio T.</creatorcontrib><creatorcontrib>Kinnison, Douglas E.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mills, Michael J.</au><au>Richter, Jadwiga H.</au><au>Tilmes, Simone</au><au>Kravitz, Ben</au><au>MacMartin, Douglas G.</au><au>Glanville, Anne A.</au><au>Tribbia, Joseph J.</au><au>Lamarque, Jean‐François</au><au>Vitt, Francis</au><au>Schmidt, Anja</au><au>Gettelman, Andrew</au><au>Hannay, Cecile</au><au>Bacmeister, Julio T.</au><au>Kinnison, Douglas E.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled CESM1(WACCM)</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2017-12-16</date><risdate>2017</risdate><volume>122</volume><issue>23</issue><spage>13,061</spage><epage>13,078</epage><pages>13,061-13,078</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>We present new insights into the evolution and interactions of stratospheric aerosol using an updated version of the Whole Atmosphere Community Climate Model (WACCM). Improved horizontal resolution, dynamics, and chemistry now produce an internally generated quasi‐biennial oscillation and significant improvements to stratospheric temperatures and ozone compared to observations. We present a validation of WACCM column ozone and climate calculations against observations. The prognostic treatment of stratospheric sulfate aerosols accurately represents the evolution of stratospheric aerosol optical depth and perturbations to solar and longwave radiation following the June 1991 eruption of Mount Pinatubo. We confirm the inclusion of interactive OH chemistry as an important factor in the formation and initial distribution of aerosol following large inputs of sulfur dioxide (SO2) to the stratosphere. We calculate that depletion of OH levels within the dense SO2 cloud in the first weeks following the Pinatubo eruption significantly prolonged the average initial e‐folding decay time for SO2 oxidation to 47 days. Previous observational and model studies showing a 30 day decay time have not accounted for the large (30–55%) losses of SO2 on ash and ice within 7–9 days posteruption and have not correctly accounted for OH depletion. We examine the variability of aerosol evolution in free‐running climate simulations due to meteorology, with comparison to simulations nudged with specified dynamics. We assess calculated impacts of volcanic aerosols on ozone loss with comparisons to observations. The completeness of the chemistry, dynamics, and aerosol microphysics in WACCM qualify it for studies of stratospheric sulfate aerosol geoengineering. Plain Language Summary Stratospheric aerosols form after volcanoes inject SO2 into the stratosphere, and can cool global surface temperatures. A new capability for simulating stratospheric aerosols from SO2 injections in the Whole Atmosphere Community Climate Model is shown to reproduce well observed climate and chemistry responses. The ability of the model to calculate accurately the reductions in sunlight and losses of ozone that have been observed following historical eruptions in the satellite era gives strong confidence in the model's ability to simulate such responses to potential future deliberate injections of SO2 to offset global warming. Such responses to geoengineering are presented in a series of companion papers. Key Points WACCM accurately calculates radiative and chemical responses to stratospheric sulfate, validating its use for geoengineering studies Interactive OH chemistry is key to the study of aerosol formation from large stratospheric SO2 perturbations OH depletion extended the calculated average initial e‐folding time for oxidation of SO2 from the 1991 Pinatubo eruption by &gt;50%</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017JD027006</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5487-1229</orcidid><orcidid>https://orcid.org/0000-0002-8284-2599</orcidid><orcidid>https://orcid.org/0000-0001-8848-975X</orcidid><orcidid>https://orcid.org/0000-0002-3418-0834</orcidid><orcidid>https://orcid.org/0000-0002-8684-214X</orcidid><orcidid>https://orcid.org/0000-0001-7048-0781</orcidid><orcidid>https://orcid.org/0000-0003-1639-9688</orcidid><orcidid>https://orcid.org/0000-0001-8759-2843</orcidid><orcidid>https://orcid.org/0000-0003-1987-9417</orcidid><orcidid>https://orcid.org/0000-0002-4225-5074</orcidid><orcidid>https://orcid.org/0000-0002-6557-3569</orcidid><orcidid>https://orcid.org/0000-0002-8054-1346</orcidid><orcidid>https://orcid.org/0000-0001-6318-1150</orcidid><orcidid>https://orcid.org/0000-0001-6363-6151</orcidid><orcidid>https://orcid.org/0000000282842599</orcidid><orcidid>https://orcid.org/0000000265573569</orcidid><orcidid>https://orcid.org/0000000280541346</orcidid><orcidid>https://orcid.org/0000000254871229</orcidid><orcidid>https://orcid.org/000000028684214X</orcidid><orcidid>https://orcid.org/0000000187592843</orcidid><orcidid>https://orcid.org/0000000163181150</orcidid><orcidid>https://orcid.org/0000000319879417</orcidid><orcidid>https://orcid.org/0000000242255074</orcidid><orcidid>https://orcid.org/0000000316399688</orcidid><orcidid>https://orcid.org/0000000234180834</orcidid><orcidid>https://orcid.org/0000000163636151</orcidid><orcidid>https://orcid.org/000000018848975X</orcidid><orcidid>https://orcid.org/0000000170480781</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2017-12, Vol.122 (23), p.13,061-13,078
issn 2169-897X
2169-8996
language eng
recordid cdi_osti_scitechconnect_1439705
source Access via Wiley Online Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Aerosol effects
Aerosol formation
Aerosol optical depth
Aerosols
Atmosphere
Atmospheric chemistry
Chemistry
Climate
Climate change
climate modeling
Climate models
Communities
Computer simulation
Decay
Depletion
Dynamics
ENVIRONMENTAL SCIENCES
Eruptions
Evolution
Folding
Geoengineering
Geophysics
Global temperatures
Global warming
Interactions
Long wave radiation
Meteorology
Microphysics
Optical analysis
Oxidation
Ozone
Perturbations
Quasi-biennial oscillation
Radiation
Satellites
Stratosphere
Stratospheric aerosols
stratospheric ozone
Stratospheric sulfate
Stratospheric temperatures
Studies
Sulfate aerosols
Sulfates
Sulfur
Sulfur dioxide
Sulphur
Surface temperature
Volcanic activity
Volcanic aerosols
Volcanic eruption effects
Volcanic eruptions
Volcanoes
title Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled CESM1(WACCM)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T02%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiative%20and%20Chemical%20Response%20to%20Interactive%20Stratospheric%20Sulfate%20Aerosols%20in%20Fully%20Coupled%20CESM1(WACCM)&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Mills,%20Michael%20J.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2017-12-16&rft.volume=122&rft.issue=23&rft.spage=13,061&rft.epage=13,078&rft.pages=13,061-13,078&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2017JD027006&rft_dat=%3Cproquest_osti_%3E1984771345%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984771345&rft_id=info:pmid/&rfr_iscdi=true