Non-covalent interactions in electrochemical reactions and implications in clean energy applications

Understanding and controlling non-covalent interactions associated with solvent molecules and redox-inactive ions provide new opportunities to enhance the reaction entropy changes and reaction kinetics of metal redox centers, which can increase the thermodynamic efficiency of energy conversion and s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2018, Vol.20 (23), p.15680-15686
Hauptverfasser: Huang, Botao, Muy, Sokseiha, Feng, Shuting, Katayama, Yu, Lu, Yi-Chun, Chen, Gang, Shao-Horn, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15686
container_issue 23
container_start_page 15680
container_title Physical chemistry chemical physics : PCCP
container_volume 20
creator Huang, Botao
Muy, Sokseiha
Feng, Shuting
Katayama, Yu
Lu, Yi-Chun
Chen, Gang
Shao-Horn, Yang
description Understanding and controlling non-covalent interactions associated with solvent molecules and redox-inactive ions provide new opportunities to enhance the reaction entropy changes and reaction kinetics of metal redox centers, which can increase the thermodynamic efficiency of energy conversion and storage devices. Here, we report systematic changes in the redox entropy of one-electron transfer reactions including [Fe(CN)6]3-/4-, [Fe(H2O)6]3+/2+ and [Ag(H2O)4]+/0 induced by the addition of redox inactive ions, where approximately twenty different known structure making/breaking ions were employed. The measured reaction entropy changes of these redox couples were found to increase linearly with higher concentration and greater structural entropy (having greater structure breaking tendency) for inactive ions with opposite charge to the redox centers. The trend could be attributed to the altered solvation shells of oxidized and reduced redox active species due to non-covalent interactions among redox centers, inactive ions and water molecules, which was supported by Raman spectroscopy. Not only were these non-covalent interactions shown to increase reaction entropy, but they were also found to systematically alter the redox kinetics, where increasing redox reaction energy changes associated with the presence of water structure breaking cations were correlated linearly with the greater exchange current density of [Fe(CN)6]3-/4-.
doi_str_mv 10.1039/c8cp02512f
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1439487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047253871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-be5f3799414ac772d81a27d6f62bebe720da019a1f653082f2704696dcbf6e553</originalsourceid><addsrcrecordid>eNpd0U1LxDAQBuAgiuvXxR8gRS8iVPPZJEdZXBUW9aDnkqZT7dImNekK---Nrq7gKcnMk4HhReiY4EuCmb6yyg6YCkKbLbRHeMFyjRXf3txlMUH7MS4wxkQQtosmVCsutNJ7qH7wLrf-w3Tgxqx1IwRjx9a7mB4ZdGDH4O0b9K01XRbgt2lcnbX90KXyRtsOTPrjILyuMjP8NQ_RTmO6CEc_5wF6md08T-_y-ePt_fR6nluuyJhXIBomteaEGyslrRUxVNZFU9AKKpAU1wYTbUhTCIYVbajEvNBFbaumACHYATpdz_VxbMto2xHsm_XOpS1KwpnmSiZ0vkZD8O9LiGPZt9FC1xkHfhlLirmkgilJEj37Rxd-GVxaISnBKRNCs6Qu1soGH2OAphxC25uwKgkuvwIqp2r69B3QLOGTn5HLqod6Q38TYZ8zQ4t0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2054235593</pqid></control><display><type>article</type><title>Non-covalent interactions in electrochemical reactions and implications in clean energy applications</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Huang, Botao ; Muy, Sokseiha ; Feng, Shuting ; Katayama, Yu ; Lu, Yi-Chun ; Chen, Gang ; Shao-Horn, Yang</creator><creatorcontrib>Huang, Botao ; Muy, Sokseiha ; Feng, Shuting ; Katayama, Yu ; Lu, Yi-Chun ; Chen, Gang ; Shao-Horn, Yang ; Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC) ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>Understanding and controlling non-covalent interactions associated with solvent molecules and redox-inactive ions provide new opportunities to enhance the reaction entropy changes and reaction kinetics of metal redox centers, which can increase the thermodynamic efficiency of energy conversion and storage devices. Here, we report systematic changes in the redox entropy of one-electron transfer reactions including [Fe(CN)6]3-/4-, [Fe(H2O)6]3+/2+ and [Ag(H2O)4]+/0 induced by the addition of redox inactive ions, where approximately twenty different known structure making/breaking ions were employed. The measured reaction entropy changes of these redox couples were found to increase linearly with higher concentration and greater structural entropy (having greater structure breaking tendency) for inactive ions with opposite charge to the redox centers. The trend could be attributed to the altered solvation shells of oxidized and reduced redox active species due to non-covalent interactions among redox centers, inactive ions and water molecules, which was supported by Raman spectroscopy. Not only were these non-covalent interactions shown to increase reaction entropy, but they were also found to systematically alter the redox kinetics, where increasing redox reaction energy changes associated with the presence of water structure breaking cations were correlated linearly with the greater exchange current density of [Fe(CN)6]3-/4-.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp02512f</identifier><identifier>PMID: 29845989</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Breaking ; Cation exchanging ; Chemical reactions ; Clean energy ; Covalence ; Electron transfer ; Energy conversion efficiency ; Energy storage ; Entropy ; Entropy of reaction ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Molecular chains ; Reaction kinetics ; Solvation ; Thermodynamic efficiency ; Water chemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018, Vol.20 (23), p.15680-15686</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-be5f3799414ac772d81a27d6f62bebe720da019a1f653082f2704696dcbf6e553</citedby><cites>FETCH-LOGICAL-c481t-be5f3799414ac772d81a27d6f62bebe720da019a1f653082f2704696dcbf6e553</cites><orcidid>0000-0003-1607-1615 ; 0000-0001-5634-5620 ; 0000-0001-8714-2121 ; 0000000156345620 ; 0000000316071615 ; 0000000187142121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29845989$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1439487$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Botao</creatorcontrib><creatorcontrib>Muy, Sokseiha</creatorcontrib><creatorcontrib>Feng, Shuting</creatorcontrib><creatorcontrib>Katayama, Yu</creatorcontrib><creatorcontrib>Lu, Yi-Chun</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Non-covalent interactions in electrochemical reactions and implications in clean energy applications</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Understanding and controlling non-covalent interactions associated with solvent molecules and redox-inactive ions provide new opportunities to enhance the reaction entropy changes and reaction kinetics of metal redox centers, which can increase the thermodynamic efficiency of energy conversion and storage devices. Here, we report systematic changes in the redox entropy of one-electron transfer reactions including [Fe(CN)6]3-/4-, [Fe(H2O)6]3+/2+ and [Ag(H2O)4]+/0 induced by the addition of redox inactive ions, where approximately twenty different known structure making/breaking ions were employed. The measured reaction entropy changes of these redox couples were found to increase linearly with higher concentration and greater structural entropy (having greater structure breaking tendency) for inactive ions with opposite charge to the redox centers. The trend could be attributed to the altered solvation shells of oxidized and reduced redox active species due to non-covalent interactions among redox centers, inactive ions and water molecules, which was supported by Raman spectroscopy. Not only were these non-covalent interactions shown to increase reaction entropy, but they were also found to systematically alter the redox kinetics, where increasing redox reaction energy changes associated with the presence of water structure breaking cations were correlated linearly with the greater exchange current density of [Fe(CN)6]3-/4-.</description><subject>Breaking</subject><subject>Cation exchanging</subject><subject>Chemical reactions</subject><subject>Clean energy</subject><subject>Covalence</subject><subject>Electron transfer</subject><subject>Energy conversion efficiency</subject><subject>Energy storage</subject><subject>Entropy</subject><subject>Entropy of reaction</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Molecular chains</subject><subject>Reaction kinetics</subject><subject>Solvation</subject><subject>Thermodynamic efficiency</subject><subject>Water chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0U1LxDAQBuAgiuvXxR8gRS8iVPPZJEdZXBUW9aDnkqZT7dImNekK---Nrq7gKcnMk4HhReiY4EuCmb6yyg6YCkKbLbRHeMFyjRXf3txlMUH7MS4wxkQQtosmVCsutNJ7qH7wLrf-w3Tgxqx1IwRjx9a7mB4ZdGDH4O0b9K01XRbgt2lcnbX90KXyRtsOTPrjILyuMjP8NQ_RTmO6CEc_5wF6md08T-_y-ePt_fR6nluuyJhXIBomteaEGyslrRUxVNZFU9AKKpAU1wYTbUhTCIYVbajEvNBFbaumACHYATpdz_VxbMto2xHsm_XOpS1KwpnmSiZ0vkZD8O9LiGPZt9FC1xkHfhlLirmkgilJEj37Rxd-GVxaISnBKRNCs6Qu1soGH2OAphxC25uwKgkuvwIqp2r69B3QLOGTn5HLqod6Q38TYZ8zQ4t0</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Huang, Botao</creator><creator>Muy, Sokseiha</creator><creator>Feng, Shuting</creator><creator>Katayama, Yu</creator><creator>Lu, Yi-Chun</creator><creator>Chen, Gang</creator><creator>Shao-Horn, Yang</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1607-1615</orcidid><orcidid>https://orcid.org/0000-0001-5634-5620</orcidid><orcidid>https://orcid.org/0000-0001-8714-2121</orcidid><orcidid>https://orcid.org/0000000156345620</orcidid><orcidid>https://orcid.org/0000000316071615</orcidid><orcidid>https://orcid.org/0000000187142121</orcidid></search><sort><creationdate>2018</creationdate><title>Non-covalent interactions in electrochemical reactions and implications in clean energy applications</title><author>Huang, Botao ; Muy, Sokseiha ; Feng, Shuting ; Katayama, Yu ; Lu, Yi-Chun ; Chen, Gang ; Shao-Horn, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-be5f3799414ac772d81a27d6f62bebe720da019a1f653082f2704696dcbf6e553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Breaking</topic><topic>Cation exchanging</topic><topic>Chemical reactions</topic><topic>Clean energy</topic><topic>Covalence</topic><topic>Electron transfer</topic><topic>Energy conversion efficiency</topic><topic>Energy storage</topic><topic>Entropy</topic><topic>Entropy of reaction</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Molecular chains</topic><topic>Reaction kinetics</topic><topic>Solvation</topic><topic>Thermodynamic efficiency</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Botao</creatorcontrib><creatorcontrib>Muy, Sokseiha</creatorcontrib><creatorcontrib>Feng, Shuting</creatorcontrib><creatorcontrib>Katayama, Yu</creatorcontrib><creatorcontrib>Lu, Yi-Chun</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Botao</au><au>Muy, Sokseiha</au><au>Feng, Shuting</au><au>Katayama, Yu</au><au>Lu, Yi-Chun</au><au>Chen, Gang</au><au>Shao-Horn, Yang</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)</aucorp><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-covalent interactions in electrochemical reactions and implications in clean energy applications</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018</date><risdate>2018</risdate><volume>20</volume><issue>23</issue><spage>15680</spage><epage>15686</epage><pages>15680-15686</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Understanding and controlling non-covalent interactions associated with solvent molecules and redox-inactive ions provide new opportunities to enhance the reaction entropy changes and reaction kinetics of metal redox centers, which can increase the thermodynamic efficiency of energy conversion and storage devices. Here, we report systematic changes in the redox entropy of one-electron transfer reactions including [Fe(CN)6]3-/4-, [Fe(H2O)6]3+/2+ and [Ag(H2O)4]+/0 induced by the addition of redox inactive ions, where approximately twenty different known structure making/breaking ions were employed. The measured reaction entropy changes of these redox couples were found to increase linearly with higher concentration and greater structural entropy (having greater structure breaking tendency) for inactive ions with opposite charge to the redox centers. The trend could be attributed to the altered solvation shells of oxidized and reduced redox active species due to non-covalent interactions among redox centers, inactive ions and water molecules, which was supported by Raman spectroscopy. Not only were these non-covalent interactions shown to increase reaction entropy, but they were also found to systematically alter the redox kinetics, where increasing redox reaction energy changes associated with the presence of water structure breaking cations were correlated linearly with the greater exchange current density of [Fe(CN)6]3-/4-.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29845989</pmid><doi>10.1039/c8cp02512f</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1607-1615</orcidid><orcidid>https://orcid.org/0000-0001-5634-5620</orcidid><orcidid>https://orcid.org/0000-0001-8714-2121</orcidid><orcidid>https://orcid.org/0000000156345620</orcidid><orcidid>https://orcid.org/0000000316071615</orcidid><orcidid>https://orcid.org/0000000187142121</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2018, Vol.20 (23), p.15680-15686
issn 1463-9076
1463-9084
language eng
recordid cdi_osti_scitechconnect_1439487
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Breaking
Cation exchanging
Chemical reactions
Clean energy
Covalence
Electron transfer
Energy conversion efficiency
Energy storage
Entropy
Entropy of reaction
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Molecular chains
Reaction kinetics
Solvation
Thermodynamic efficiency
Water chemistry
title Non-covalent interactions in electrochemical reactions and implications in clean energy applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-covalent%20interactions%20in%20electrochemical%20reactions%20and%20implications%20in%20clean%20energy%20applications&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Huang,%20Botao&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Solid-State%20Solar-Thermal%20Energy%20Conversion%20Center%20(S3TEC)&rft.date=2018&rft.volume=20&rft.issue=23&rft.spage=15680&rft.epage=15686&rft.pages=15680-15686&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp02512f&rft_dat=%3Cproquest_osti_%3E2047253871%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2054235593&rft_id=info:pmid/29845989&rfr_iscdi=true