Dealing with boundary artifacts in MCMC-based deconvolution
Many numerical methods for deconvolution problems are designed to take advantage of the computational efficiency of spectral methods, but classical approaches to spectral techniques require particular conditions be applied uniformly across all boundaries of the signal. These boundary conditions – tr...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2015-05, Vol.473 (C), p.339-358 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 358 |
---|---|
container_issue | C |
container_start_page | 339 |
container_title | Linear algebra and its applications |
container_volume | 473 |
creator | Bardsley, Johnathan M. Luttman, Aaron |
description | Many numerical methods for deconvolution problems are designed to take advantage of the computational efficiency of spectral methods, but classical approaches to spectral techniques require particular conditions be applied uniformly across all boundaries of the signal. These boundary conditions – traditionally periodic, Dirichlet, Neumann, or related – are essentially methods for generating data values outside the domain of the signal, but they often lack physical motivation and can result in artifacts in the reconstruction near the boundary. In this work we present a data-driven technique for computing boundary values by solving a regularized and well-posed form of the deconvolution problem on an extended domain. Further, a Bayesian framework is constructed for the deconvolution, and we present a Markov chain Monte Carlo method for sampling from the posterior distribution. There are several advantages to this approach, including that it still takes advantage of the efficiency of spectral methods, that it allows the boundaries of the signal to be treated in a non-uniform manner – thereby reducing artifacts – and that the sampling scheme gives a natural method for quantifying uncertainties in the reconstruction. |
doi_str_mv | 10.1016/j.laa.2014.09.023 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1439387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379514006089</els_id><sourcerecordid>S0024379514006089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-9f5257b3a41b74aedf2bf0c369c05382e1d3eff9993416e386c63efc23861edf3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIHcIu4J6ztvKyeUHhKrbjA2XLsNXUVYhS7Rfw9jsqZ0652Z0YzQ8g1hYICrW93xaBUwYCWBYgCGD8hC9o2PKdtVZ-SBQArc96I6pxchLADgLIBtiCre1SDGz-ybxe3We_3o1HTT6am6KzSMWRuzDbdpst7FdBkBrUfD37YR-fHS3Jm1RDw6m8uyfvjw1v3nK9fn166u3Wued3EXNiKVU3PVUn7plRoLOstpJ_QUPGWITUcrRVC8JLWyNta1-mgWdpoQvMluTnq-hCdDNpF1NvkY0QdJS254CnoktAjSE8-hAmt_JrcZ8oiKci5IrmTqSI5VyRByFRR4qyOHEzuDw6nWRxHjcZNs7bx7h_2L6mGbec</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dealing with boundary artifacts in MCMC-based deconvolution</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bardsley, Johnathan M. ; Luttman, Aaron</creator><creatorcontrib>Bardsley, Johnathan M. ; Luttman, Aaron</creatorcontrib><description>Many numerical methods for deconvolution problems are designed to take advantage of the computational efficiency of spectral methods, but classical approaches to spectral techniques require particular conditions be applied uniformly across all boundaries of the signal. These boundary conditions – traditionally periodic, Dirichlet, Neumann, or related – are essentially methods for generating data values outside the domain of the signal, but they often lack physical motivation and can result in artifacts in the reconstruction near the boundary. In this work we present a data-driven technique for computing boundary values by solving a regularized and well-posed form of the deconvolution problem on an extended domain. Further, a Bayesian framework is constructed for the deconvolution, and we present a Markov chain Monte Carlo method for sampling from the posterior distribution. There are several advantages to this approach, including that it still takes advantage of the efficiency of spectral methods, that it allows the boundaries of the signal to be treated in a non-uniform manner – thereby reducing artifacts – and that the sampling scheme gives a natural method for quantifying uncertainties in the reconstruction.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2014.09.023</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bayesian methods ; Boundary conditions ; Deconvolution ; Imaging ; Inverse problems ; Markov chain Monte Carlo</subject><ispartof>Linear algebra and its applications, 2015-05, Vol.473 (C), p.339-358</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-9f5257b3a41b74aedf2bf0c369c05382e1d3eff9993416e386c63efc23861edf3</citedby><cites>FETCH-LOGICAL-c367t-9f5257b3a41b74aedf2bf0c369c05382e1d3eff9993416e386c63efc23861edf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0024379514006089$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1439387$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bardsley, Johnathan M.</creatorcontrib><creatorcontrib>Luttman, Aaron</creatorcontrib><title>Dealing with boundary artifacts in MCMC-based deconvolution</title><title>Linear algebra and its applications</title><description>Many numerical methods for deconvolution problems are designed to take advantage of the computational efficiency of spectral methods, but classical approaches to spectral techniques require particular conditions be applied uniformly across all boundaries of the signal. These boundary conditions – traditionally periodic, Dirichlet, Neumann, or related – are essentially methods for generating data values outside the domain of the signal, but they often lack physical motivation and can result in artifacts in the reconstruction near the boundary. In this work we present a data-driven technique for computing boundary values by solving a regularized and well-posed form of the deconvolution problem on an extended domain. Further, a Bayesian framework is constructed for the deconvolution, and we present a Markov chain Monte Carlo method for sampling from the posterior distribution. There are several advantages to this approach, including that it still takes advantage of the efficiency of spectral methods, that it allows the boundaries of the signal to be treated in a non-uniform manner – thereby reducing artifacts – and that the sampling scheme gives a natural method for quantifying uncertainties in the reconstruction.</description><subject>Bayesian methods</subject><subject>Boundary conditions</subject><subject>Deconvolution</subject><subject>Imaging</subject><subject>Inverse problems</subject><subject>Markov chain Monte Carlo</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIHcIu4J6ztvKyeUHhKrbjA2XLsNXUVYhS7Rfw9jsqZ0652Z0YzQ8g1hYICrW93xaBUwYCWBYgCGD8hC9o2PKdtVZ-SBQArc96I6pxchLADgLIBtiCre1SDGz-ybxe3We_3o1HTT6am6KzSMWRuzDbdpst7FdBkBrUfD37YR-fHS3Jm1RDw6m8uyfvjw1v3nK9fn166u3Wued3EXNiKVU3PVUn7plRoLOstpJ_QUPGWITUcrRVC8JLWyNta1-mgWdpoQvMluTnq-hCdDNpF1NvkY0QdJS254CnoktAjSE8-hAmt_JrcZ8oiKci5IrmTqSI5VyRByFRR4qyOHEzuDw6nWRxHjcZNs7bx7h_2L6mGbec</recordid><startdate>20150515</startdate><enddate>20150515</enddate><creator>Bardsley, Johnathan M.</creator><creator>Luttman, Aaron</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20150515</creationdate><title>Dealing with boundary artifacts in MCMC-based deconvolution</title><author>Bardsley, Johnathan M. ; Luttman, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-9f5257b3a41b74aedf2bf0c369c05382e1d3eff9993416e386c63efc23861edf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bayesian methods</topic><topic>Boundary conditions</topic><topic>Deconvolution</topic><topic>Imaging</topic><topic>Inverse problems</topic><topic>Markov chain Monte Carlo</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bardsley, Johnathan M.</creatorcontrib><creatorcontrib>Luttman, Aaron</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bardsley, Johnathan M.</au><au>Luttman, Aaron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dealing with boundary artifacts in MCMC-based deconvolution</atitle><jtitle>Linear algebra and its applications</jtitle><date>2015-05-15</date><risdate>2015</risdate><volume>473</volume><issue>C</issue><spage>339</spage><epage>358</epage><pages>339-358</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Many numerical methods for deconvolution problems are designed to take advantage of the computational efficiency of spectral methods, but classical approaches to spectral techniques require particular conditions be applied uniformly across all boundaries of the signal. These boundary conditions – traditionally periodic, Dirichlet, Neumann, or related – are essentially methods for generating data values outside the domain of the signal, but they often lack physical motivation and can result in artifacts in the reconstruction near the boundary. In this work we present a data-driven technique for computing boundary values by solving a regularized and well-posed form of the deconvolution problem on an extended domain. Further, a Bayesian framework is constructed for the deconvolution, and we present a Markov chain Monte Carlo method for sampling from the posterior distribution. There are several advantages to this approach, including that it still takes advantage of the efficiency of spectral methods, that it allows the boundaries of the signal to be treated in a non-uniform manner – thereby reducing artifacts – and that the sampling scheme gives a natural method for quantifying uncertainties in the reconstruction.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2014.09.023</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2015-05, Vol.473 (C), p.339-358 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_osti_scitechconnect_1439387 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Bayesian methods Boundary conditions Deconvolution Imaging Inverse problems Markov chain Monte Carlo |
title | Dealing with boundary artifacts in MCMC-based deconvolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T15%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dealing%20with%20boundary%20artifacts%20in%20MCMC-based%20deconvolution&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Bardsley,%20Johnathan%20M.&rft.date=2015-05-15&rft.volume=473&rft.issue=C&rft.spage=339&rft.epage=358&rft.pages=339-358&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2014.09.023&rft_dat=%3Celsevier_osti_%3ES0024379514006089%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0024379514006089&rfr_iscdi=true |