Dealing with boundary artifacts in MCMC-based deconvolution

Many numerical methods for deconvolution problems are designed to take advantage of the computational efficiency of spectral methods, but classical approaches to spectral techniques require particular conditions be applied uniformly across all boundaries of the signal. These boundary conditions – tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2015-05, Vol.473 (C), p.339-358
Hauptverfasser: Bardsley, Johnathan M., Luttman, Aaron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 358
container_issue C
container_start_page 339
container_title Linear algebra and its applications
container_volume 473
creator Bardsley, Johnathan M.
Luttman, Aaron
description Many numerical methods for deconvolution problems are designed to take advantage of the computational efficiency of spectral methods, but classical approaches to spectral techniques require particular conditions be applied uniformly across all boundaries of the signal. These boundary conditions – traditionally periodic, Dirichlet, Neumann, or related – are essentially methods for generating data values outside the domain of the signal, but they often lack physical motivation and can result in artifacts in the reconstruction near the boundary. In this work we present a data-driven technique for computing boundary values by solving a regularized and well-posed form of the deconvolution problem on an extended domain. Further, a Bayesian framework is constructed for the deconvolution, and we present a Markov chain Monte Carlo method for sampling from the posterior distribution. There are several advantages to this approach, including that it still takes advantage of the efficiency of spectral methods, that it allows the boundaries of the signal to be treated in a non-uniform manner – thereby reducing artifacts – and that the sampling scheme gives a natural method for quantifying uncertainties in the reconstruction.
doi_str_mv 10.1016/j.laa.2014.09.023
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1439387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379514006089</els_id><sourcerecordid>S0024379514006089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-9f5257b3a41b74aedf2bf0c369c05382e1d3eff9993416e386c63efc23861edf3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIHcIu4J6ztvKyeUHhKrbjA2XLsNXUVYhS7Rfw9jsqZ0652Z0YzQ8g1hYICrW93xaBUwYCWBYgCGD8hC9o2PKdtVZ-SBQArc96I6pxchLADgLIBtiCre1SDGz-ybxe3We_3o1HTT6am6KzSMWRuzDbdpst7FdBkBrUfD37YR-fHS3Jm1RDw6m8uyfvjw1v3nK9fn166u3Wued3EXNiKVU3PVUn7plRoLOstpJ_QUPGWITUcrRVC8JLWyNta1-mgWdpoQvMluTnq-hCdDNpF1NvkY0QdJS254CnoktAjSE8-hAmt_JrcZ8oiKci5IrmTqSI5VyRByFRR4qyOHEzuDw6nWRxHjcZNs7bx7h_2L6mGbec</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dealing with boundary artifacts in MCMC-based deconvolution</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bardsley, Johnathan M. ; Luttman, Aaron</creator><creatorcontrib>Bardsley, Johnathan M. ; Luttman, Aaron</creatorcontrib><description>Many numerical methods for deconvolution problems are designed to take advantage of the computational efficiency of spectral methods, but classical approaches to spectral techniques require particular conditions be applied uniformly across all boundaries of the signal. These boundary conditions – traditionally periodic, Dirichlet, Neumann, or related – are essentially methods for generating data values outside the domain of the signal, but they often lack physical motivation and can result in artifacts in the reconstruction near the boundary. In this work we present a data-driven technique for computing boundary values by solving a regularized and well-posed form of the deconvolution problem on an extended domain. Further, a Bayesian framework is constructed for the deconvolution, and we present a Markov chain Monte Carlo method for sampling from the posterior distribution. There are several advantages to this approach, including that it still takes advantage of the efficiency of spectral methods, that it allows the boundaries of the signal to be treated in a non-uniform manner – thereby reducing artifacts – and that the sampling scheme gives a natural method for quantifying uncertainties in the reconstruction.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2014.09.023</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bayesian methods ; Boundary conditions ; Deconvolution ; Imaging ; Inverse problems ; Markov chain Monte Carlo</subject><ispartof>Linear algebra and its applications, 2015-05, Vol.473 (C), p.339-358</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-9f5257b3a41b74aedf2bf0c369c05382e1d3eff9993416e386c63efc23861edf3</citedby><cites>FETCH-LOGICAL-c367t-9f5257b3a41b74aedf2bf0c369c05382e1d3eff9993416e386c63efc23861edf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0024379514006089$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1439387$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bardsley, Johnathan M.</creatorcontrib><creatorcontrib>Luttman, Aaron</creatorcontrib><title>Dealing with boundary artifacts in MCMC-based deconvolution</title><title>Linear algebra and its applications</title><description>Many numerical methods for deconvolution problems are designed to take advantage of the computational efficiency of spectral methods, but classical approaches to spectral techniques require particular conditions be applied uniformly across all boundaries of the signal. These boundary conditions – traditionally periodic, Dirichlet, Neumann, or related – are essentially methods for generating data values outside the domain of the signal, but they often lack physical motivation and can result in artifacts in the reconstruction near the boundary. In this work we present a data-driven technique for computing boundary values by solving a regularized and well-posed form of the deconvolution problem on an extended domain. Further, a Bayesian framework is constructed for the deconvolution, and we present a Markov chain Monte Carlo method for sampling from the posterior distribution. There are several advantages to this approach, including that it still takes advantage of the efficiency of spectral methods, that it allows the boundaries of the signal to be treated in a non-uniform manner – thereby reducing artifacts – and that the sampling scheme gives a natural method for quantifying uncertainties in the reconstruction.</description><subject>Bayesian methods</subject><subject>Boundary conditions</subject><subject>Deconvolution</subject><subject>Imaging</subject><subject>Inverse problems</subject><subject>Markov chain Monte Carlo</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIHcIu4J6ztvKyeUHhKrbjA2XLsNXUVYhS7Rfw9jsqZ0652Z0YzQ8g1hYICrW93xaBUwYCWBYgCGD8hC9o2PKdtVZ-SBQArc96I6pxchLADgLIBtiCre1SDGz-ybxe3We_3o1HTT6am6KzSMWRuzDbdpst7FdBkBrUfD37YR-fHS3Jm1RDw6m8uyfvjw1v3nK9fn166u3Wued3EXNiKVU3PVUn7plRoLOstpJ_QUPGWITUcrRVC8JLWyNta1-mgWdpoQvMluTnq-hCdDNpF1NvkY0QdJS254CnoktAjSE8-hAmt_JrcZ8oiKci5IrmTqSI5VyRByFRR4qyOHEzuDw6nWRxHjcZNs7bx7h_2L6mGbec</recordid><startdate>20150515</startdate><enddate>20150515</enddate><creator>Bardsley, Johnathan M.</creator><creator>Luttman, Aaron</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20150515</creationdate><title>Dealing with boundary artifacts in MCMC-based deconvolution</title><author>Bardsley, Johnathan M. ; Luttman, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-9f5257b3a41b74aedf2bf0c369c05382e1d3eff9993416e386c63efc23861edf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bayesian methods</topic><topic>Boundary conditions</topic><topic>Deconvolution</topic><topic>Imaging</topic><topic>Inverse problems</topic><topic>Markov chain Monte Carlo</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bardsley, Johnathan M.</creatorcontrib><creatorcontrib>Luttman, Aaron</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bardsley, Johnathan M.</au><au>Luttman, Aaron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dealing with boundary artifacts in MCMC-based deconvolution</atitle><jtitle>Linear algebra and its applications</jtitle><date>2015-05-15</date><risdate>2015</risdate><volume>473</volume><issue>C</issue><spage>339</spage><epage>358</epage><pages>339-358</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Many numerical methods for deconvolution problems are designed to take advantage of the computational efficiency of spectral methods, but classical approaches to spectral techniques require particular conditions be applied uniformly across all boundaries of the signal. These boundary conditions – traditionally periodic, Dirichlet, Neumann, or related – are essentially methods for generating data values outside the domain of the signal, but they often lack physical motivation and can result in artifacts in the reconstruction near the boundary. In this work we present a data-driven technique for computing boundary values by solving a regularized and well-posed form of the deconvolution problem on an extended domain. Further, a Bayesian framework is constructed for the deconvolution, and we present a Markov chain Monte Carlo method for sampling from the posterior distribution. There are several advantages to this approach, including that it still takes advantage of the efficiency of spectral methods, that it allows the boundaries of the signal to be treated in a non-uniform manner – thereby reducing artifacts – and that the sampling scheme gives a natural method for quantifying uncertainties in the reconstruction.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2014.09.023</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2015-05, Vol.473 (C), p.339-358
issn 0024-3795
1873-1856
language eng
recordid cdi_osti_scitechconnect_1439387
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Bayesian methods
Boundary conditions
Deconvolution
Imaging
Inverse problems
Markov chain Monte Carlo
title Dealing with boundary artifacts in MCMC-based deconvolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T15%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dealing%20with%20boundary%20artifacts%20in%20MCMC-based%20deconvolution&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Bardsley,%20Johnathan%20M.&rft.date=2015-05-15&rft.volume=473&rft.issue=C&rft.spage=339&rft.epage=358&rft.pages=339-358&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2014.09.023&rft_dat=%3Celsevier_osti_%3ES0024379514006089%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0024379514006089&rfr_iscdi=true