Far Infrared Synchrotron Near-Field Nanoimaging and Nanospectroscopy

Scattering scanning near-field optical microscopy (s-SNOM) has emerged as a powerful imaging and spectroscopic tool for investigating nanoscale heterogeneities in biology, quantum matter, and electronic and photonic devices. However, many materials are defined by a wide range of fundamental molecula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS photonics 2018-07, Vol.5 (7), p.2773-2779
Hauptverfasser: Khatib, Omar, Bechtel, Hans A, Martin, Michael C, Raschke, Markus B, Carr, G. Lawrence
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2779
container_issue 7
container_start_page 2773
container_title ACS photonics
container_volume 5
creator Khatib, Omar
Bechtel, Hans A
Martin, Michael C
Raschke, Markus B
Carr, G. Lawrence
description Scattering scanning near-field optical microscopy (s-SNOM) has emerged as a powerful imaging and spectroscopic tool for investigating nanoscale heterogeneities in biology, quantum matter, and electronic and photonic devices. However, many materials are defined by a wide range of fundamental molecular and quantum states at far-infrared (FIR) resonant frequencies currently not accessible by s-SNOM. Here we show ultrabroadband FIR s-SNOM nanoimaging and spectroscopy by combining synchrotron infrared radiation with a novel fast and low-noise copper-doped germanium (Ge:Cu) photoconductive detector. This approach of FIR synchrotron infrared nanospectroscopy (SINS) extends the wavelength range of s-SNOM to 31 μm (320 cm–1, 9.7 THz), exceeding conventional limits by an octave to lower energies. We demonstrate this new nanospectroscopic window by measuring elementary excitations of exemplary functional materials, including surface phonon polariton waves and optical phonons in oxides and layered ultrathin van der Waals materials, skeletal and conformational vibrations in molecular systems, and the highly tunable plasmonic response of graphene.
doi_str_mv 10.1021/acsphotonics.8b00565
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1439299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b961628679</sourcerecordid><originalsourceid>FETCH-LOGICAL-a431t-e6418c12b6b91768d8de857d2c50dadee020740cc9d85217ff7d4e0045ddf15e3</originalsourceid><addsrcrecordid>eNp9kD9PAzEMxSMEElXpN2A4sV9xcsn9GVGhUKkqAzBHqeNrryrJKTmGfnuCrkMnJtvye9bPj7F7DnMOgj8ajP3eD951GOf1FkCV6opNRFFALkGI64v-ls1iPAAAB1WUpZyw56UJ2cq1wQSy2cfJ4T74IXiXbciEfNnR0WYb43z3bXad22XGjXPsCZMuou9Pd-ymNcdIs3Odsq_ly-fiLV-_v64WT-vcyIIPOZWS18jFttw2vCprW1uqVWUFKrDGEoGASgJiY2sleNW2lZUEIJW1LVdUTNnDeNfHodMRu4Fwj965hKK5LBrRNEkkRxEmuhio1X1I8OGkOei_xPRlYvqcWLLBaEtbffA_waVP_rf8AuHlc04</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Far Infrared Synchrotron Near-Field Nanoimaging and Nanospectroscopy</title><source>ACS Publications</source><creator>Khatib, Omar ; Bechtel, Hans A ; Martin, Michael C ; Raschke, Markus B ; Carr, G. Lawrence</creator><creatorcontrib>Khatib, Omar ; Bechtel, Hans A ; Martin, Michael C ; Raschke, Markus B ; Carr, G. Lawrence ; Brookhaven National Lab. (BNL), Upton, NY (United States) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Scattering scanning near-field optical microscopy (s-SNOM) has emerged as a powerful imaging and spectroscopic tool for investigating nanoscale heterogeneities in biology, quantum matter, and electronic and photonic devices. However, many materials are defined by a wide range of fundamental molecular and quantum states at far-infrared (FIR) resonant frequencies currently not accessible by s-SNOM. Here we show ultrabroadband FIR s-SNOM nanoimaging and spectroscopy by combining synchrotron infrared radiation with a novel fast and low-noise copper-doped germanium (Ge:Cu) photoconductive detector. This approach of FIR synchrotron infrared nanospectroscopy (SINS) extends the wavelength range of s-SNOM to 31 μm (320 cm–1, 9.7 THz), exceeding conventional limits by an octave to lower energies. We demonstrate this new nanospectroscopic window by measuring elementary excitations of exemplary functional materials, including surface phonon polariton waves and optical phonons in oxides and layered ultrathin van der Waals materials, skeletal and conformational vibrations in molecular systems, and the highly tunable plasmonic response of graphene.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.8b00565</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>far-infrared ; graphene plasmonics ; NANOSCIENCE AND NANOTECHNOLOGY ; near-field microscopy ; OTHER INSTRUMENTATION ; s-SNOM ; spatiospectral nanoimaging ; synchrotron infrared nanospectroscopy</subject><ispartof>ACS photonics, 2018-07, Vol.5 (7), p.2773-2779</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a431t-e6418c12b6b91768d8de857d2c50dadee020740cc9d85217ff7d4e0045ddf15e3</citedby><cites>FETCH-LOGICAL-a431t-e6418c12b6b91768d8de857d2c50dadee020740cc9d85217ff7d4e0045ddf15e3</cites><orcidid>0000-0002-0721-9684 ; 0000-0003-2822-851X ; 000000032822851X ; 0000000207219684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsphotonics.8b00565$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsphotonics.8b00565$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1439299$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Khatib, Omar</creatorcontrib><creatorcontrib>Bechtel, Hans A</creatorcontrib><creatorcontrib>Martin, Michael C</creatorcontrib><creatorcontrib>Raschke, Markus B</creatorcontrib><creatorcontrib>Carr, G. Lawrence</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Far Infrared Synchrotron Near-Field Nanoimaging and Nanospectroscopy</title><title>ACS photonics</title><addtitle>ACS Photonics</addtitle><description>Scattering scanning near-field optical microscopy (s-SNOM) has emerged as a powerful imaging and spectroscopic tool for investigating nanoscale heterogeneities in biology, quantum matter, and electronic and photonic devices. However, many materials are defined by a wide range of fundamental molecular and quantum states at far-infrared (FIR) resonant frequencies currently not accessible by s-SNOM. Here we show ultrabroadband FIR s-SNOM nanoimaging and spectroscopy by combining synchrotron infrared radiation with a novel fast and low-noise copper-doped germanium (Ge:Cu) photoconductive detector. This approach of FIR synchrotron infrared nanospectroscopy (SINS) extends the wavelength range of s-SNOM to 31 μm (320 cm–1, 9.7 THz), exceeding conventional limits by an octave to lower energies. We demonstrate this new nanospectroscopic window by measuring elementary excitations of exemplary functional materials, including surface phonon polariton waves and optical phonons in oxides and layered ultrathin van der Waals materials, skeletal and conformational vibrations in molecular systems, and the highly tunable plasmonic response of graphene.</description><subject>far-infrared</subject><subject>graphene plasmonics</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>near-field microscopy</subject><subject>OTHER INSTRUMENTATION</subject><subject>s-SNOM</subject><subject>spatiospectral nanoimaging</subject><subject>synchrotron infrared nanospectroscopy</subject><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PAzEMxSMEElXpN2A4sV9xcsn9GVGhUKkqAzBHqeNrryrJKTmGfnuCrkMnJtvye9bPj7F7DnMOgj8ajP3eD951GOf1FkCV6opNRFFALkGI64v-ls1iPAAAB1WUpZyw56UJ2cq1wQSy2cfJ4T74IXiXbciEfNnR0WYb43z3bXad22XGjXPsCZMuou9Pd-ymNcdIs3Odsq_ly-fiLV-_v64WT-vcyIIPOZWS18jFttw2vCprW1uqVWUFKrDGEoGASgJiY2sleNW2lZUEIJW1LVdUTNnDeNfHodMRu4Fwj965hKK5LBrRNEkkRxEmuhio1X1I8OGkOei_xPRlYvqcWLLBaEtbffA_waVP_rf8AuHlc04</recordid><startdate>20180718</startdate><enddate>20180718</enddate><creator>Khatib, Omar</creator><creator>Bechtel, Hans A</creator><creator>Martin, Michael C</creator><creator>Raschke, Markus B</creator><creator>Carr, G. Lawrence</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0721-9684</orcidid><orcidid>https://orcid.org/0000-0003-2822-851X</orcidid><orcidid>https://orcid.org/000000032822851X</orcidid><orcidid>https://orcid.org/0000000207219684</orcidid></search><sort><creationdate>20180718</creationdate><title>Far Infrared Synchrotron Near-Field Nanoimaging and Nanospectroscopy</title><author>Khatib, Omar ; Bechtel, Hans A ; Martin, Michael C ; Raschke, Markus B ; Carr, G. Lawrence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a431t-e6418c12b6b91768d8de857d2c50dadee020740cc9d85217ff7d4e0045ddf15e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>far-infrared</topic><topic>graphene plasmonics</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>near-field microscopy</topic><topic>OTHER INSTRUMENTATION</topic><topic>s-SNOM</topic><topic>spatiospectral nanoimaging</topic><topic>synchrotron infrared nanospectroscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Khatib, Omar</creatorcontrib><creatorcontrib>Bechtel, Hans A</creatorcontrib><creatorcontrib>Martin, Michael C</creatorcontrib><creatorcontrib>Raschke, Markus B</creatorcontrib><creatorcontrib>Carr, G. Lawrence</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khatib, Omar</au><au>Bechtel, Hans A</au><au>Martin, Michael C</au><au>Raschke, Markus B</au><au>Carr, G. Lawrence</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Far Infrared Synchrotron Near-Field Nanoimaging and Nanospectroscopy</atitle><jtitle>ACS photonics</jtitle><addtitle>ACS Photonics</addtitle><date>2018-07-18</date><risdate>2018</risdate><volume>5</volume><issue>7</issue><spage>2773</spage><epage>2779</epage><pages>2773-2779</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>Scattering scanning near-field optical microscopy (s-SNOM) has emerged as a powerful imaging and spectroscopic tool for investigating nanoscale heterogeneities in biology, quantum matter, and electronic and photonic devices. However, many materials are defined by a wide range of fundamental molecular and quantum states at far-infrared (FIR) resonant frequencies currently not accessible by s-SNOM. Here we show ultrabroadband FIR s-SNOM nanoimaging and spectroscopy by combining synchrotron infrared radiation with a novel fast and low-noise copper-doped germanium (Ge:Cu) photoconductive detector. This approach of FIR synchrotron infrared nanospectroscopy (SINS) extends the wavelength range of s-SNOM to 31 μm (320 cm–1, 9.7 THz), exceeding conventional limits by an octave to lower energies. We demonstrate this new nanospectroscopic window by measuring elementary excitations of exemplary functional materials, including surface phonon polariton waves and optical phonons in oxides and layered ultrathin van der Waals materials, skeletal and conformational vibrations in molecular systems, and the highly tunable plasmonic response of graphene.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsphotonics.8b00565</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0721-9684</orcidid><orcidid>https://orcid.org/0000-0003-2822-851X</orcidid><orcidid>https://orcid.org/000000032822851X</orcidid><orcidid>https://orcid.org/0000000207219684</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2330-4022
ispartof ACS photonics, 2018-07, Vol.5 (7), p.2773-2779
issn 2330-4022
2330-4022
language eng
recordid cdi_osti_scitechconnect_1439299
source ACS Publications
subjects far-infrared
graphene plasmonics
NANOSCIENCE AND NANOTECHNOLOGY
near-field microscopy
OTHER INSTRUMENTATION
s-SNOM
spatiospectral nanoimaging
synchrotron infrared nanospectroscopy
title Far Infrared Synchrotron Near-Field Nanoimaging and Nanospectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Far%20Infrared%20Synchrotron%20Near-Field%20Nanoimaging%20and%20Nanospectroscopy&rft.jtitle=ACS%20photonics&rft.au=Khatib,%20Omar&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2018-07-18&rft.volume=5&rft.issue=7&rft.spage=2773&rft.epage=2779&rft.pages=2773-2779&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.8b00565&rft_dat=%3Cacs_osti_%3Eb961628679%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true