Influence of Nonuniform Micron-Scale Strain Distributions on the Electrical Reorientation of Magnetic Microstructures in a Composite Multiferroic Heterostructure

Composite multiferroic systems, consisting of a piezoelectric substrate coupled with a ferromagnetic thin film, are of great interest from a technological point of view because they offer a path toward the development of ultralow power magnetoelectric devices. The key aspect of those systems is the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2018-03, Vol.18 (3), p.1952-1961
Hauptverfasser: Lo Conte, Roberto, Xiao, Zhuyun, Chen, Cai, Stan, Camelia V, Gorchon, Jon, El-Ghazaly, Amal, Nowakowski, Mark E, Sohn, Hyunmin, Pattabi, Akshay, Scholl, Andreas, Tamura, Nobumichi, Sepulveda, Abdon, Carman, Gregory P, Candler, Robert N, Bokor, Jeffrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1961
container_issue 3
container_start_page 1952
container_title Nano letters
container_volume 18
creator Lo Conte, Roberto
Xiao, Zhuyun
Chen, Cai
Stan, Camelia V
Gorchon, Jon
El-Ghazaly, Amal
Nowakowski, Mark E
Sohn, Hyunmin
Pattabi, Akshay
Scholl, Andreas
Tamura, Nobumichi
Sepulveda, Abdon
Carman, Gregory P
Candler, Robert N
Bokor, Jeffrey
description Composite multiferroic systems, consisting of a piezoelectric substrate coupled with a ferromagnetic thin film, are of great interest from a technological point of view because they offer a path toward the development of ultralow power magnetoelectric devices. The key aspect of those systems is the possibility to control magnetization via an electric field, relying on the magneto-elastic coupling at the interface between the piezoelectric and the ferromagnetic components. Accordingly, a direct measurement of both the electrically induced magnetic behavior and of the piezo-strain driving such behavior is crucial for better understanding and further developing these materials systems. In this work, we measure and characterize the micron-scale strain and magnetic response, as a function of an applied electric field, in a composite multiferroic system composed of 1 and 2 μm squares of Ni fabricated on a prepoled [Pb­(Mg1/3Nb2/3)­O3]0.69–[PbTiO3]0.31 (PMN–PT) single crystal substrate by X-ray microdiffraction and X-ray photoemission electron microscopy, respectively. These two complementary measurements of the same area on the sample indicate the presence of a nonuniform strain which strongly influences the reorientation of the magnetic state within identical Ni microstructures along the surface of the sample. Micromagnetic simulations confirm these experimental observations. This study emphasizes the critical importance of surface and interface engineering on the micron-scale in composite multiferroic structures and introduces a robust method to characterize future devices on these length scales.
doi_str_mv 10.1021/acs.nanolett.7b05342
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1439239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008892466</sourcerecordid><originalsourceid>FETCH-LOGICAL-a558t-b157d5e2037c4dd710286519e99b721aa2948d63a6b99d1f76ca95bcc2b89fd3</originalsourceid><addsrcrecordid>eNp9kctu1DAUhiMEoqXwBghZrGCRwZc4sZfVUJhKMyDR7i3HOWFcZezBl0o8Dm-Ko0xHrFjZOvr-_1z-qnpL8IpgSj5pE1dOOz9BSquux5w19Fl1STjDdSslfX7-i-aiehXjA8ZYMo5fVhdUNoJ0XFxWf27dOGVwBpAf0TfvsrOjDwe0syZ4V98ZPQG6S0Fbhz7bmILtc7LeReQdSntANxOYUi0c-gE-WHBJz8Dst9M_HSRrFrciziblABEVM43W_nD00SZAuzwlO0IIvrAbSPAP_Lp6MeopwpvTe1Xdf7m5X2_q7fevt-vrba05F6nuCe8GDhSzzjTD0JUbiZYTCVL2HSVazzsPLdNtL-VAxq41WvLeGNoLOQ7sqnq_2JbOVkVTxjJ7450r2ynSMEmZLNDHBdrrSR2DPejwW3lt1eZ6q-YapkyIhrWPpLAfFvYY_K8MMamDjQamSTvwOSqKsRCSNm1b0GZB5yPFAOPZm2A1h61K2OopbHUKu8jenTrk_gDDWfSUbgHwAszyB5-DKwf8v-df6A68xA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008892466</pqid></control><display><type>article</type><title>Influence of Nonuniform Micron-Scale Strain Distributions on the Electrical Reorientation of Magnetic Microstructures in a Composite Multiferroic Heterostructure</title><source>ACS Publications</source><creator>Lo Conte, Roberto ; Xiao, Zhuyun ; Chen, Cai ; Stan, Camelia V ; Gorchon, Jon ; El-Ghazaly, Amal ; Nowakowski, Mark E ; Sohn, Hyunmin ; Pattabi, Akshay ; Scholl, Andreas ; Tamura, Nobumichi ; Sepulveda, Abdon ; Carman, Gregory P ; Candler, Robert N ; Bokor, Jeffrey</creator><creatorcontrib>Lo Conte, Roberto ; Xiao, Zhuyun ; Chen, Cai ; Stan, Camelia V ; Gorchon, Jon ; El-Ghazaly, Amal ; Nowakowski, Mark E ; Sohn, Hyunmin ; Pattabi, Akshay ; Scholl, Andreas ; Tamura, Nobumichi ; Sepulveda, Abdon ; Carman, Gregory P ; Candler, Robert N ; Bokor, Jeffrey ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Composite multiferroic systems, consisting of a piezoelectric substrate coupled with a ferromagnetic thin film, are of great interest from a technological point of view because they offer a path toward the development of ultralow power magnetoelectric devices. The key aspect of those systems is the possibility to control magnetization via an electric field, relying on the magneto-elastic coupling at the interface between the piezoelectric and the ferromagnetic components. Accordingly, a direct measurement of both the electrically induced magnetic behavior and of the piezo-strain driving such behavior is crucial for better understanding and further developing these materials systems. In this work, we measure and characterize the micron-scale strain and magnetic response, as a function of an applied electric field, in a composite multiferroic system composed of 1 and 2 μm squares of Ni fabricated on a prepoled [Pb­(Mg1/3Nb2/3)­O3]0.69–[PbTiO3]0.31 (PMN–PT) single crystal substrate by X-ray microdiffraction and X-ray photoemission electron microscopy, respectively. These two complementary measurements of the same area on the sample indicate the presence of a nonuniform strain which strongly influences the reorientation of the magnetic state within identical Ni microstructures along the surface of the sample. Micromagnetic simulations confirm these experimental observations. This study emphasizes the critical importance of surface and interface engineering on the micron-scale in composite multiferroic structures and introduces a robust method to characterize future devices on these length scales.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.7b05342</identifier><identifier>PMID: 29481758</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Condensed Matter ; electrical magnetization switching ; magneto-elastic coupling ; MATERIALS SCIENCE ; multiferroics ; Physics ; piezo-strain ; straintronics</subject><ispartof>Nano letters, 2018-03, Vol.18 (3), p.1952-1961</ispartof><rights>Copyright © 2018 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a558t-b157d5e2037c4dd710286519e99b721aa2948d63a6b99d1f76ca95bcc2b89fd3</citedby><cites>FETCH-LOGICAL-a558t-b157d5e2037c4dd710286519e99b721aa2948d63a6b99d1f76ca95bcc2b89fd3</cites><orcidid>0000-0002-5025-5568 ; 0000-0002-5050-9978 ; 0000-0003-2578-0835 ; 0000-0002-8195-9648 ; 0000000250255568 ; 0000000250509978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b05342$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.7b05342$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29481758$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-02388436$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1439239$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lo Conte, Roberto</creatorcontrib><creatorcontrib>Xiao, Zhuyun</creatorcontrib><creatorcontrib>Chen, Cai</creatorcontrib><creatorcontrib>Stan, Camelia V</creatorcontrib><creatorcontrib>Gorchon, Jon</creatorcontrib><creatorcontrib>El-Ghazaly, Amal</creatorcontrib><creatorcontrib>Nowakowski, Mark E</creatorcontrib><creatorcontrib>Sohn, Hyunmin</creatorcontrib><creatorcontrib>Pattabi, Akshay</creatorcontrib><creatorcontrib>Scholl, Andreas</creatorcontrib><creatorcontrib>Tamura, Nobumichi</creatorcontrib><creatorcontrib>Sepulveda, Abdon</creatorcontrib><creatorcontrib>Carman, Gregory P</creatorcontrib><creatorcontrib>Candler, Robert N</creatorcontrib><creatorcontrib>Bokor, Jeffrey</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Influence of Nonuniform Micron-Scale Strain Distributions on the Electrical Reorientation of Magnetic Microstructures in a Composite Multiferroic Heterostructure</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Composite multiferroic systems, consisting of a piezoelectric substrate coupled with a ferromagnetic thin film, are of great interest from a technological point of view because they offer a path toward the development of ultralow power magnetoelectric devices. The key aspect of those systems is the possibility to control magnetization via an electric field, relying on the magneto-elastic coupling at the interface between the piezoelectric and the ferromagnetic components. Accordingly, a direct measurement of both the electrically induced magnetic behavior and of the piezo-strain driving such behavior is crucial for better understanding and further developing these materials systems. In this work, we measure and characterize the micron-scale strain and magnetic response, as a function of an applied electric field, in a composite multiferroic system composed of 1 and 2 μm squares of Ni fabricated on a prepoled [Pb­(Mg1/3Nb2/3)­O3]0.69–[PbTiO3]0.31 (PMN–PT) single crystal substrate by X-ray microdiffraction and X-ray photoemission electron microscopy, respectively. These two complementary measurements of the same area on the sample indicate the presence of a nonuniform strain which strongly influences the reorientation of the magnetic state within identical Ni microstructures along the surface of the sample. Micromagnetic simulations confirm these experimental observations. This study emphasizes the critical importance of surface and interface engineering on the micron-scale in composite multiferroic structures and introduces a robust method to characterize future devices on these length scales.</description><subject>Condensed Matter</subject><subject>electrical magnetization switching</subject><subject>magneto-elastic coupling</subject><subject>MATERIALS SCIENCE</subject><subject>multiferroics</subject><subject>Physics</subject><subject>piezo-strain</subject><subject>straintronics</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1DAUhiMEoqXwBghZrGCRwZc4sZfVUJhKMyDR7i3HOWFcZezBl0o8Dm-Ko0xHrFjZOvr-_1z-qnpL8IpgSj5pE1dOOz9BSquux5w19Fl1STjDdSslfX7-i-aiehXjA8ZYMo5fVhdUNoJ0XFxWf27dOGVwBpAf0TfvsrOjDwe0syZ4V98ZPQG6S0Fbhz7bmILtc7LeReQdSntANxOYUi0c-gE-WHBJz8Dst9M_HSRrFrciziblABEVM43W_nD00SZAuzwlO0IIvrAbSPAP_Lp6MeopwpvTe1Xdf7m5X2_q7fevt-vrba05F6nuCe8GDhSzzjTD0JUbiZYTCVL2HSVazzsPLdNtL-VAxq41WvLeGNoLOQ7sqnq_2JbOVkVTxjJ7450r2ynSMEmZLNDHBdrrSR2DPejwW3lt1eZ6q-YapkyIhrWPpLAfFvYY_K8MMamDjQamSTvwOSqKsRCSNm1b0GZB5yPFAOPZm2A1h61K2OopbHUKu8jenTrk_gDDWfSUbgHwAszyB5-DKwf8v-df6A68xA</recordid><startdate>20180314</startdate><enddate>20180314</enddate><creator>Lo Conte, Roberto</creator><creator>Xiao, Zhuyun</creator><creator>Chen, Cai</creator><creator>Stan, Camelia V</creator><creator>Gorchon, Jon</creator><creator>El-Ghazaly, Amal</creator><creator>Nowakowski, Mark E</creator><creator>Sohn, Hyunmin</creator><creator>Pattabi, Akshay</creator><creator>Scholl, Andreas</creator><creator>Tamura, Nobumichi</creator><creator>Sepulveda, Abdon</creator><creator>Carman, Gregory P</creator><creator>Candler, Robert N</creator><creator>Bokor, Jeffrey</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5025-5568</orcidid><orcidid>https://orcid.org/0000-0002-5050-9978</orcidid><orcidid>https://orcid.org/0000-0003-2578-0835</orcidid><orcidid>https://orcid.org/0000-0002-8195-9648</orcidid><orcidid>https://orcid.org/0000000250255568</orcidid><orcidid>https://orcid.org/0000000250509978</orcidid></search><sort><creationdate>20180314</creationdate><title>Influence of Nonuniform Micron-Scale Strain Distributions on the Electrical Reorientation of Magnetic Microstructures in a Composite Multiferroic Heterostructure</title><author>Lo Conte, Roberto ; Xiao, Zhuyun ; Chen, Cai ; Stan, Camelia V ; Gorchon, Jon ; El-Ghazaly, Amal ; Nowakowski, Mark E ; Sohn, Hyunmin ; Pattabi, Akshay ; Scholl, Andreas ; Tamura, Nobumichi ; Sepulveda, Abdon ; Carman, Gregory P ; Candler, Robert N ; Bokor, Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a558t-b157d5e2037c4dd710286519e99b721aa2948d63a6b99d1f76ca95bcc2b89fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Condensed Matter</topic><topic>electrical magnetization switching</topic><topic>magneto-elastic coupling</topic><topic>MATERIALS SCIENCE</topic><topic>multiferroics</topic><topic>Physics</topic><topic>piezo-strain</topic><topic>straintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lo Conte, Roberto</creatorcontrib><creatorcontrib>Xiao, Zhuyun</creatorcontrib><creatorcontrib>Chen, Cai</creatorcontrib><creatorcontrib>Stan, Camelia V</creatorcontrib><creatorcontrib>Gorchon, Jon</creatorcontrib><creatorcontrib>El-Ghazaly, Amal</creatorcontrib><creatorcontrib>Nowakowski, Mark E</creatorcontrib><creatorcontrib>Sohn, Hyunmin</creatorcontrib><creatorcontrib>Pattabi, Akshay</creatorcontrib><creatorcontrib>Scholl, Andreas</creatorcontrib><creatorcontrib>Tamura, Nobumichi</creatorcontrib><creatorcontrib>Sepulveda, Abdon</creatorcontrib><creatorcontrib>Carman, Gregory P</creatorcontrib><creatorcontrib>Candler, Robert N</creatorcontrib><creatorcontrib>Bokor, Jeffrey</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lo Conte, Roberto</au><au>Xiao, Zhuyun</au><au>Chen, Cai</au><au>Stan, Camelia V</au><au>Gorchon, Jon</au><au>El-Ghazaly, Amal</au><au>Nowakowski, Mark E</au><au>Sohn, Hyunmin</au><au>Pattabi, Akshay</au><au>Scholl, Andreas</au><au>Tamura, Nobumichi</au><au>Sepulveda, Abdon</au><au>Carman, Gregory P</au><au>Candler, Robert N</au><au>Bokor, Jeffrey</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Nonuniform Micron-Scale Strain Distributions on the Electrical Reorientation of Magnetic Microstructures in a Composite Multiferroic Heterostructure</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2018-03-14</date><risdate>2018</risdate><volume>18</volume><issue>3</issue><spage>1952</spage><epage>1961</epage><pages>1952-1961</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Composite multiferroic systems, consisting of a piezoelectric substrate coupled with a ferromagnetic thin film, are of great interest from a technological point of view because they offer a path toward the development of ultralow power magnetoelectric devices. The key aspect of those systems is the possibility to control magnetization via an electric field, relying on the magneto-elastic coupling at the interface between the piezoelectric and the ferromagnetic components. Accordingly, a direct measurement of both the electrically induced magnetic behavior and of the piezo-strain driving such behavior is crucial for better understanding and further developing these materials systems. In this work, we measure and characterize the micron-scale strain and magnetic response, as a function of an applied electric field, in a composite multiferroic system composed of 1 and 2 μm squares of Ni fabricated on a prepoled [Pb­(Mg1/3Nb2/3)­O3]0.69–[PbTiO3]0.31 (PMN–PT) single crystal substrate by X-ray microdiffraction and X-ray photoemission electron microscopy, respectively. These two complementary measurements of the same area on the sample indicate the presence of a nonuniform strain which strongly influences the reorientation of the magnetic state within identical Ni microstructures along the surface of the sample. Micromagnetic simulations confirm these experimental observations. This study emphasizes the critical importance of surface and interface engineering on the micron-scale in composite multiferroic structures and introduces a robust method to characterize future devices on these length scales.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29481758</pmid><doi>10.1021/acs.nanolett.7b05342</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5025-5568</orcidid><orcidid>https://orcid.org/0000-0002-5050-9978</orcidid><orcidid>https://orcid.org/0000-0003-2578-0835</orcidid><orcidid>https://orcid.org/0000-0002-8195-9648</orcidid><orcidid>https://orcid.org/0000000250255568</orcidid><orcidid>https://orcid.org/0000000250509978</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2018-03, Vol.18 (3), p.1952-1961
issn 1530-6984
1530-6992
language eng
recordid cdi_osti_scitechconnect_1439239
source ACS Publications
subjects Condensed Matter
electrical magnetization switching
magneto-elastic coupling
MATERIALS SCIENCE
multiferroics
Physics
piezo-strain
straintronics
title Influence of Nonuniform Micron-Scale Strain Distributions on the Electrical Reorientation of Magnetic Microstructures in a Composite Multiferroic Heterostructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Nonuniform%20Micron-Scale%20Strain%20Distributions%20on%20the%20Electrical%20Reorientation%20of%20Magnetic%20Microstructures%20in%20a%20Composite%20Multiferroic%20Heterostructure&rft.jtitle=Nano%20letters&rft.au=Lo%20Conte,%20Roberto&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2018-03-14&rft.volume=18&rft.issue=3&rft.spage=1952&rft.epage=1961&rft.pages=1952-1961&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.7b05342&rft_dat=%3Cproquest_osti_%3E2008892466%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2008892466&rft_id=info:pmid/29481758&rfr_iscdi=true