Influence of Nonuniform Micron-Scale Strain Distributions on the Electrical Reorientation of Magnetic Microstructures in a Composite Multiferroic Heterostructure
Composite multiferroic systems, consisting of a piezoelectric substrate coupled with a ferromagnetic thin film, are of great interest from a technological point of view because they offer a path toward the development of ultralow power magnetoelectric devices. The key aspect of those systems is the...
Gespeichert in:
Veröffentlicht in: | Nano letters 2018-03, Vol.18 (3), p.1952-1961 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1961 |
---|---|
container_issue | 3 |
container_start_page | 1952 |
container_title | Nano letters |
container_volume | 18 |
creator | Lo Conte, Roberto Xiao, Zhuyun Chen, Cai Stan, Camelia V Gorchon, Jon El-Ghazaly, Amal Nowakowski, Mark E Sohn, Hyunmin Pattabi, Akshay Scholl, Andreas Tamura, Nobumichi Sepulveda, Abdon Carman, Gregory P Candler, Robert N Bokor, Jeffrey |
description | Composite multiferroic systems, consisting of a piezoelectric substrate coupled with a ferromagnetic thin film, are of great interest from a technological point of view because they offer a path toward the development of ultralow power magnetoelectric devices. The key aspect of those systems is the possibility to control magnetization via an electric field, relying on the magneto-elastic coupling at the interface between the piezoelectric and the ferromagnetic components. Accordingly, a direct measurement of both the electrically induced magnetic behavior and of the piezo-strain driving such behavior is crucial for better understanding and further developing these materials systems. In this work, we measure and characterize the micron-scale strain and magnetic response, as a function of an applied electric field, in a composite multiferroic system composed of 1 and 2 μm squares of Ni fabricated on a prepoled [Pb(Mg1/3Nb2/3)O3]0.69–[PbTiO3]0.31 (PMN–PT) single crystal substrate by X-ray microdiffraction and X-ray photoemission electron microscopy, respectively. These two complementary measurements of the same area on the sample indicate the presence of a nonuniform strain which strongly influences the reorientation of the magnetic state within identical Ni microstructures along the surface of the sample. Micromagnetic simulations confirm these experimental observations. This study emphasizes the critical importance of surface and interface engineering on the micron-scale in composite multiferroic structures and introduces a robust method to characterize future devices on these length scales. |
doi_str_mv | 10.1021/acs.nanolett.7b05342 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1439239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008892466</sourcerecordid><originalsourceid>FETCH-LOGICAL-a558t-b157d5e2037c4dd710286519e99b721aa2948d63a6b99d1f76ca95bcc2b89fd3</originalsourceid><addsrcrecordid>eNp9kctu1DAUhiMEoqXwBghZrGCRwZc4sZfVUJhKMyDR7i3HOWFcZezBl0o8Dm-Ko0xHrFjZOvr-_1z-qnpL8IpgSj5pE1dOOz9BSquux5w19Fl1STjDdSslfX7-i-aiehXjA8ZYMo5fVhdUNoJ0XFxWf27dOGVwBpAf0TfvsrOjDwe0syZ4V98ZPQG6S0Fbhz7bmILtc7LeReQdSntANxOYUi0c-gE-WHBJz8Dst9M_HSRrFrciziblABEVM43W_nD00SZAuzwlO0IIvrAbSPAP_Lp6MeopwpvTe1Xdf7m5X2_q7fevt-vrba05F6nuCe8GDhSzzjTD0JUbiZYTCVL2HSVazzsPLdNtL-VAxq41WvLeGNoLOQ7sqnq_2JbOVkVTxjJ7450r2ynSMEmZLNDHBdrrSR2DPejwW3lt1eZ6q-YapkyIhrWPpLAfFvYY_K8MMamDjQamSTvwOSqKsRCSNm1b0GZB5yPFAOPZm2A1h61K2OopbHUKu8jenTrk_gDDWfSUbgHwAszyB5-DKwf8v-df6A68xA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008892466</pqid></control><display><type>article</type><title>Influence of Nonuniform Micron-Scale Strain Distributions on the Electrical Reorientation of Magnetic Microstructures in a Composite Multiferroic Heterostructure</title><source>ACS Publications</source><creator>Lo Conte, Roberto ; Xiao, Zhuyun ; Chen, Cai ; Stan, Camelia V ; Gorchon, Jon ; El-Ghazaly, Amal ; Nowakowski, Mark E ; Sohn, Hyunmin ; Pattabi, Akshay ; Scholl, Andreas ; Tamura, Nobumichi ; Sepulveda, Abdon ; Carman, Gregory P ; Candler, Robert N ; Bokor, Jeffrey</creator><creatorcontrib>Lo Conte, Roberto ; Xiao, Zhuyun ; Chen, Cai ; Stan, Camelia V ; Gorchon, Jon ; El-Ghazaly, Amal ; Nowakowski, Mark E ; Sohn, Hyunmin ; Pattabi, Akshay ; Scholl, Andreas ; Tamura, Nobumichi ; Sepulveda, Abdon ; Carman, Gregory P ; Candler, Robert N ; Bokor, Jeffrey ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Composite multiferroic systems, consisting of a piezoelectric substrate coupled with a ferromagnetic thin film, are of great interest from a technological point of view because they offer a path toward the development of ultralow power magnetoelectric devices. The key aspect of those systems is the possibility to control magnetization via an electric field, relying on the magneto-elastic coupling at the interface between the piezoelectric and the ferromagnetic components. Accordingly, a direct measurement of both the electrically induced magnetic behavior and of the piezo-strain driving such behavior is crucial for better understanding and further developing these materials systems. In this work, we measure and characterize the micron-scale strain and magnetic response, as a function of an applied electric field, in a composite multiferroic system composed of 1 and 2 μm squares of Ni fabricated on a prepoled [Pb(Mg1/3Nb2/3)O3]0.69–[PbTiO3]0.31 (PMN–PT) single crystal substrate by X-ray microdiffraction and X-ray photoemission electron microscopy, respectively. These two complementary measurements of the same area on the sample indicate the presence of a nonuniform strain which strongly influences the reorientation of the magnetic state within identical Ni microstructures along the surface of the sample. Micromagnetic simulations confirm these experimental observations. This study emphasizes the critical importance of surface and interface engineering on the micron-scale in composite multiferroic structures and introduces a robust method to characterize future devices on these length scales.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.7b05342</identifier><identifier>PMID: 29481758</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Condensed Matter ; electrical magnetization switching ; magneto-elastic coupling ; MATERIALS SCIENCE ; multiferroics ; Physics ; piezo-strain ; straintronics</subject><ispartof>Nano letters, 2018-03, Vol.18 (3), p.1952-1961</ispartof><rights>Copyright © 2018 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a558t-b157d5e2037c4dd710286519e99b721aa2948d63a6b99d1f76ca95bcc2b89fd3</citedby><cites>FETCH-LOGICAL-a558t-b157d5e2037c4dd710286519e99b721aa2948d63a6b99d1f76ca95bcc2b89fd3</cites><orcidid>0000-0002-5025-5568 ; 0000-0002-5050-9978 ; 0000-0003-2578-0835 ; 0000-0002-8195-9648 ; 0000000250255568 ; 0000000250509978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b05342$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.7b05342$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29481758$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-02388436$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1439239$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lo Conte, Roberto</creatorcontrib><creatorcontrib>Xiao, Zhuyun</creatorcontrib><creatorcontrib>Chen, Cai</creatorcontrib><creatorcontrib>Stan, Camelia V</creatorcontrib><creatorcontrib>Gorchon, Jon</creatorcontrib><creatorcontrib>El-Ghazaly, Amal</creatorcontrib><creatorcontrib>Nowakowski, Mark E</creatorcontrib><creatorcontrib>Sohn, Hyunmin</creatorcontrib><creatorcontrib>Pattabi, Akshay</creatorcontrib><creatorcontrib>Scholl, Andreas</creatorcontrib><creatorcontrib>Tamura, Nobumichi</creatorcontrib><creatorcontrib>Sepulveda, Abdon</creatorcontrib><creatorcontrib>Carman, Gregory P</creatorcontrib><creatorcontrib>Candler, Robert N</creatorcontrib><creatorcontrib>Bokor, Jeffrey</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Influence of Nonuniform Micron-Scale Strain Distributions on the Electrical Reorientation of Magnetic Microstructures in a Composite Multiferroic Heterostructure</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Composite multiferroic systems, consisting of a piezoelectric substrate coupled with a ferromagnetic thin film, are of great interest from a technological point of view because they offer a path toward the development of ultralow power magnetoelectric devices. The key aspect of those systems is the possibility to control magnetization via an electric field, relying on the magneto-elastic coupling at the interface between the piezoelectric and the ferromagnetic components. Accordingly, a direct measurement of both the electrically induced magnetic behavior and of the piezo-strain driving such behavior is crucial for better understanding and further developing these materials systems. In this work, we measure and characterize the micron-scale strain and magnetic response, as a function of an applied electric field, in a composite multiferroic system composed of 1 and 2 μm squares of Ni fabricated on a prepoled [Pb(Mg1/3Nb2/3)O3]0.69–[PbTiO3]0.31 (PMN–PT) single crystal substrate by X-ray microdiffraction and X-ray photoemission electron microscopy, respectively. These two complementary measurements of the same area on the sample indicate the presence of a nonuniform strain which strongly influences the reorientation of the magnetic state within identical Ni microstructures along the surface of the sample. Micromagnetic simulations confirm these experimental observations. This study emphasizes the critical importance of surface and interface engineering on the micron-scale in composite multiferroic structures and introduces a robust method to characterize future devices on these length scales.</description><subject>Condensed Matter</subject><subject>electrical magnetization switching</subject><subject>magneto-elastic coupling</subject><subject>MATERIALS SCIENCE</subject><subject>multiferroics</subject><subject>Physics</subject><subject>piezo-strain</subject><subject>straintronics</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1DAUhiMEoqXwBghZrGCRwZc4sZfVUJhKMyDR7i3HOWFcZezBl0o8Dm-Ko0xHrFjZOvr-_1z-qnpL8IpgSj5pE1dOOz9BSquux5w19Fl1STjDdSslfX7-i-aiehXjA8ZYMo5fVhdUNoJ0XFxWf27dOGVwBpAf0TfvsrOjDwe0syZ4V98ZPQG6S0Fbhz7bmILtc7LeReQdSntANxOYUi0c-gE-WHBJz8Dst9M_HSRrFrciziblABEVM43W_nD00SZAuzwlO0IIvrAbSPAP_Lp6MeopwpvTe1Xdf7m5X2_q7fevt-vrba05F6nuCe8GDhSzzjTD0JUbiZYTCVL2HSVazzsPLdNtL-VAxq41WvLeGNoLOQ7sqnq_2JbOVkVTxjJ7450r2ynSMEmZLNDHBdrrSR2DPejwW3lt1eZ6q-YapkyIhrWPpLAfFvYY_K8MMamDjQamSTvwOSqKsRCSNm1b0GZB5yPFAOPZm2A1h61K2OopbHUKu8jenTrk_gDDWfSUbgHwAszyB5-DKwf8v-df6A68xA</recordid><startdate>20180314</startdate><enddate>20180314</enddate><creator>Lo Conte, Roberto</creator><creator>Xiao, Zhuyun</creator><creator>Chen, Cai</creator><creator>Stan, Camelia V</creator><creator>Gorchon, Jon</creator><creator>El-Ghazaly, Amal</creator><creator>Nowakowski, Mark E</creator><creator>Sohn, Hyunmin</creator><creator>Pattabi, Akshay</creator><creator>Scholl, Andreas</creator><creator>Tamura, Nobumichi</creator><creator>Sepulveda, Abdon</creator><creator>Carman, Gregory P</creator><creator>Candler, Robert N</creator><creator>Bokor, Jeffrey</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5025-5568</orcidid><orcidid>https://orcid.org/0000-0002-5050-9978</orcidid><orcidid>https://orcid.org/0000-0003-2578-0835</orcidid><orcidid>https://orcid.org/0000-0002-8195-9648</orcidid><orcidid>https://orcid.org/0000000250255568</orcidid><orcidid>https://orcid.org/0000000250509978</orcidid></search><sort><creationdate>20180314</creationdate><title>Influence of Nonuniform Micron-Scale Strain Distributions on the Electrical Reorientation of Magnetic Microstructures in a Composite Multiferroic Heterostructure</title><author>Lo Conte, Roberto ; Xiao, Zhuyun ; Chen, Cai ; Stan, Camelia V ; Gorchon, Jon ; El-Ghazaly, Amal ; Nowakowski, Mark E ; Sohn, Hyunmin ; Pattabi, Akshay ; Scholl, Andreas ; Tamura, Nobumichi ; Sepulveda, Abdon ; Carman, Gregory P ; Candler, Robert N ; Bokor, Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a558t-b157d5e2037c4dd710286519e99b721aa2948d63a6b99d1f76ca95bcc2b89fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Condensed Matter</topic><topic>electrical magnetization switching</topic><topic>magneto-elastic coupling</topic><topic>MATERIALS SCIENCE</topic><topic>multiferroics</topic><topic>Physics</topic><topic>piezo-strain</topic><topic>straintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lo Conte, Roberto</creatorcontrib><creatorcontrib>Xiao, Zhuyun</creatorcontrib><creatorcontrib>Chen, Cai</creatorcontrib><creatorcontrib>Stan, Camelia V</creatorcontrib><creatorcontrib>Gorchon, Jon</creatorcontrib><creatorcontrib>El-Ghazaly, Amal</creatorcontrib><creatorcontrib>Nowakowski, Mark E</creatorcontrib><creatorcontrib>Sohn, Hyunmin</creatorcontrib><creatorcontrib>Pattabi, Akshay</creatorcontrib><creatorcontrib>Scholl, Andreas</creatorcontrib><creatorcontrib>Tamura, Nobumichi</creatorcontrib><creatorcontrib>Sepulveda, Abdon</creatorcontrib><creatorcontrib>Carman, Gregory P</creatorcontrib><creatorcontrib>Candler, Robert N</creatorcontrib><creatorcontrib>Bokor, Jeffrey</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lo Conte, Roberto</au><au>Xiao, Zhuyun</au><au>Chen, Cai</au><au>Stan, Camelia V</au><au>Gorchon, Jon</au><au>El-Ghazaly, Amal</au><au>Nowakowski, Mark E</au><au>Sohn, Hyunmin</au><au>Pattabi, Akshay</au><au>Scholl, Andreas</au><au>Tamura, Nobumichi</au><au>Sepulveda, Abdon</au><au>Carman, Gregory P</au><au>Candler, Robert N</au><au>Bokor, Jeffrey</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Nonuniform Micron-Scale Strain Distributions on the Electrical Reorientation of Magnetic Microstructures in a Composite Multiferroic Heterostructure</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2018-03-14</date><risdate>2018</risdate><volume>18</volume><issue>3</issue><spage>1952</spage><epage>1961</epage><pages>1952-1961</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Composite multiferroic systems, consisting of a piezoelectric substrate coupled with a ferromagnetic thin film, are of great interest from a technological point of view because they offer a path toward the development of ultralow power magnetoelectric devices. The key aspect of those systems is the possibility to control magnetization via an electric field, relying on the magneto-elastic coupling at the interface between the piezoelectric and the ferromagnetic components. Accordingly, a direct measurement of both the electrically induced magnetic behavior and of the piezo-strain driving such behavior is crucial for better understanding and further developing these materials systems. In this work, we measure and characterize the micron-scale strain and magnetic response, as a function of an applied electric field, in a composite multiferroic system composed of 1 and 2 μm squares of Ni fabricated on a prepoled [Pb(Mg1/3Nb2/3)O3]0.69–[PbTiO3]0.31 (PMN–PT) single crystal substrate by X-ray microdiffraction and X-ray photoemission electron microscopy, respectively. These two complementary measurements of the same area on the sample indicate the presence of a nonuniform strain which strongly influences the reorientation of the magnetic state within identical Ni microstructures along the surface of the sample. Micromagnetic simulations confirm these experimental observations. This study emphasizes the critical importance of surface and interface engineering on the micron-scale in composite multiferroic structures and introduces a robust method to characterize future devices on these length scales.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29481758</pmid><doi>10.1021/acs.nanolett.7b05342</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5025-5568</orcidid><orcidid>https://orcid.org/0000-0002-5050-9978</orcidid><orcidid>https://orcid.org/0000-0003-2578-0835</orcidid><orcidid>https://orcid.org/0000-0002-8195-9648</orcidid><orcidid>https://orcid.org/0000000250255568</orcidid><orcidid>https://orcid.org/0000000250509978</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2018-03, Vol.18 (3), p.1952-1961 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_osti_scitechconnect_1439239 |
source | ACS Publications |
subjects | Condensed Matter electrical magnetization switching magneto-elastic coupling MATERIALS SCIENCE multiferroics Physics piezo-strain straintronics |
title | Influence of Nonuniform Micron-Scale Strain Distributions on the Electrical Reorientation of Magnetic Microstructures in a Composite Multiferroic Heterostructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Nonuniform%20Micron-Scale%20Strain%20Distributions%20on%20the%20Electrical%20Reorientation%20of%20Magnetic%20Microstructures%20in%20a%20Composite%20Multiferroic%20Heterostructure&rft.jtitle=Nano%20letters&rft.au=Lo%20Conte,%20Roberto&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2018-03-14&rft.volume=18&rft.issue=3&rft.spage=1952&rft.epage=1961&rft.pages=1952-1961&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.7b05342&rft_dat=%3Cproquest_osti_%3E2008892466%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2008892466&rft_id=info:pmid/29481758&rfr_iscdi=true |