Fe Stabilization by Intermetallic L10‑FePt and Pt Catalysis Enhancement in L10‑FePt/Pt Nanoparticles for Efficient Oxygen Reduction Reaction in Fuel Cells

We report in this article a detailed study on how to stabilize a first-row transition metal (M) in an intermetallic L10-MPt alloy nanoparticle (NP) structure and how to surround the L10-MPt with an atomic layer of Pt to enhance the electrocatalysis of Pt for oxygen reduction reaction (ORR) in fuel c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2018-02, Vol.140 (8), p.2926-2932
Hauptverfasser: Li, Junrui, Xi, Zheng, Pan, Yung-Tin, Spendelow, Jacob S, Duchesne, Paul N, Su, Dong, Li, Qing, Yu, Chao, Yin, Zhouyang, Shen, Bo, Kim, Yu Seung, Zhang, Peng, Sun, Shouheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2932
container_issue 8
container_start_page 2926
container_title Journal of the American Chemical Society
container_volume 140
creator Li, Junrui
Xi, Zheng
Pan, Yung-Tin
Spendelow, Jacob S
Duchesne, Paul N
Su, Dong
Li, Qing
Yu, Chao
Yin, Zhouyang
Shen, Bo
Kim, Yu Seung
Zhang, Peng
Sun, Shouheng
description We report in this article a detailed study on how to stabilize a first-row transition metal (M) in an intermetallic L10-MPt alloy nanoparticle (NP) structure and how to surround the L10-MPt with an atomic layer of Pt to enhance the electrocatalysis of Pt for oxygen reduction reaction (ORR) in fuel cell operation conditions. Using 8 nm FePt NPs as an example, we demonstrate that Fe can be stabilized more efficiently in a core/shell structured L10-FePt/Pt with a 5 Å Pt shell. The presence of Fe in the alloy core induces the desired compression of the thin Pt shell, especially the two atomic layers of Pt shell, further improving the ORR catalysis. This leads to much enhanced Pt catalysis for ORR in 0.1 M HClO4 solution (at both room temperature and 60 °C) and in the membrane electrode assembly (MEA) at 80 °C. The L10-FePt/Pt catalyst has a mass activity of 0.7 A/mgPt from the half-cell ORR test and shows no obvious mass activity loss after 30 000 potential cycles between 0.6 and 0.95 V at 80 °C in the MEA, meeting the DOE 2020 target (
doi_str_mv 10.1021/jacs.7b12829
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1438309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1999201235</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3379-f5327d038e57a27cfdcbef28a0b5554d5fcc6e55f4032ef87fe47d3f13830d743</originalsourceid><addsrcrecordid>eNqFkc9OGzEQxi1UJNLQGw9g9dTLgv-s195jFSU0UgQV0LPl9Y7B0cabrr0S4dRX4AV4uD5JHZIDt56-Gc1P38zoQ-iCkktKGL1aGxsvZUOZYvUJmlDBSCEoqz6hCSGEFVJV_Ax9jnGd25IpOkFvC8D3yTS-8y8m-T7gZoeXIcGwgWS6zlu8ouTvn9cF_EzYhBZnmZk82kUf8Tw8mWBhAyFhHz6gVxm7MaHfmiF520HErh_w3Dlv_R6-fd49QsB30I72fe0dmEORbRYjdHgGXRfP0akzXYQvR52iX4v5w-xHsbq9Xs6-rwrDuawLJziTLeEKhDRMWtfaBhxThjRCiLIVztoKhHAl4Qyckg5K2XJHueKklSWfoq8H3z4mr6P1CeyT7UMAmzQt91idoW8HaDv0v0eISW98tPlME6Afo2aUVqoSVIn_orSua0Yo4x_QHJ5e9-MQ8qOaEr2PVO8j1cdI-T87D5ZS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1999201235</pqid></control><display><type>article</type><title>Fe Stabilization by Intermetallic L10‑FePt and Pt Catalysis Enhancement in L10‑FePt/Pt Nanoparticles for Efficient Oxygen Reduction Reaction in Fuel Cells</title><source>ACS Publications</source><creator>Li, Junrui ; Xi, Zheng ; Pan, Yung-Tin ; Spendelow, Jacob S ; Duchesne, Paul N ; Su, Dong ; Li, Qing ; Yu, Chao ; Yin, Zhouyang ; Shen, Bo ; Kim, Yu Seung ; Zhang, Peng ; Sun, Shouheng</creator><creatorcontrib>Li, Junrui ; Xi, Zheng ; Pan, Yung-Tin ; Spendelow, Jacob S ; Duchesne, Paul N ; Su, Dong ; Li, Qing ; Yu, Chao ; Yin, Zhouyang ; Shen, Bo ; Kim, Yu Seung ; Zhang, Peng ; Sun, Shouheng ; Brookhaven National Lab. (BNL), Upton, NY (United States) ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States) ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>We report in this article a detailed study on how to stabilize a first-row transition metal (M) in an intermetallic L10-MPt alloy nanoparticle (NP) structure and how to surround the L10-MPt with an atomic layer of Pt to enhance the electrocatalysis of Pt for oxygen reduction reaction (ORR) in fuel cell operation conditions. Using 8 nm FePt NPs as an example, we demonstrate that Fe can be stabilized more efficiently in a core/shell structured L10-FePt/Pt with a 5 Å Pt shell. The presence of Fe in the alloy core induces the desired compression of the thin Pt shell, especially the two atomic layers of Pt shell, further improving the ORR catalysis. This leads to much enhanced Pt catalysis for ORR in 0.1 M HClO4 solution (at both room temperature and 60 °C) and in the membrane electrode assembly (MEA) at 80 °C. The L10-FePt/Pt catalyst has a mass activity of 0.7 A/mgPt from the half-cell ORR test and shows no obvious mass activity loss after 30 000 potential cycles between 0.6 and 0.95 V at 80 °C in the MEA, meeting the DOE 2020 target (&lt;40% loss in mass activity). We are extending the concept and preparing other L10-MPt/Pt NPs, such as L10-CoPt/Pt NPs, with reduced NP size as a highly efficient ORR catalyst for automotive fuel cell applications.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.7b12829</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>alloy nanoparticles ; alloys ; ambient temperature ; catalysts ; catalytic activity ; electrochemistry ; electrodes ; ENERGY PLANNING, POLICY AND ECONOMY ; Energy Sciences ; fuel cells ; iron ; L10-FePt ; MPt alloy nanoparticle ; Oxygen Reduction Reaction ; perchloric acid</subject><ispartof>Journal of the American Chemical Society, 2018-02, Vol.140 (8), p.2926-2932</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4051-0430 ; 0000-0001-8011-7134 ; 0000-0002-5446-3890 ; 0000-0003-3953-7772 ; 0000-0003-3603-0175 ; 0000-0002-4386-1199 ; 0000-0003-4807-030X ; 0000-0002-4028-4250 ; 0000-0002-1921-6683 ; 0000000180117134 ; 0000000240284250 ; 0000000339537772 ; 0000000243861199 ; 000000034807030X ; 0000000240510430 ; 0000000219216683 ; 0000000336030175 ; 0000000254463890 ; 0000000281117782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.7b12829$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.7b12829$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1438309$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Junrui</creatorcontrib><creatorcontrib>Xi, Zheng</creatorcontrib><creatorcontrib>Pan, Yung-Tin</creatorcontrib><creatorcontrib>Spendelow, Jacob S</creatorcontrib><creatorcontrib>Duchesne, Paul N</creatorcontrib><creatorcontrib>Su, Dong</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Yu, Chao</creatorcontrib><creatorcontrib>Yin, Zhouyang</creatorcontrib><creatorcontrib>Shen, Bo</creatorcontrib><creatorcontrib>Kim, Yu Seung</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Sun, Shouheng</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Fe Stabilization by Intermetallic L10‑FePt and Pt Catalysis Enhancement in L10‑FePt/Pt Nanoparticles for Efficient Oxygen Reduction Reaction in Fuel Cells</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>We report in this article a detailed study on how to stabilize a first-row transition metal (M) in an intermetallic L10-MPt alloy nanoparticle (NP) structure and how to surround the L10-MPt with an atomic layer of Pt to enhance the electrocatalysis of Pt for oxygen reduction reaction (ORR) in fuel cell operation conditions. Using 8 nm FePt NPs as an example, we demonstrate that Fe can be stabilized more efficiently in a core/shell structured L10-FePt/Pt with a 5 Å Pt shell. The presence of Fe in the alloy core induces the desired compression of the thin Pt shell, especially the two atomic layers of Pt shell, further improving the ORR catalysis. This leads to much enhanced Pt catalysis for ORR in 0.1 M HClO4 solution (at both room temperature and 60 °C) and in the membrane electrode assembly (MEA) at 80 °C. The L10-FePt/Pt catalyst has a mass activity of 0.7 A/mgPt from the half-cell ORR test and shows no obvious mass activity loss after 30 000 potential cycles between 0.6 and 0.95 V at 80 °C in the MEA, meeting the DOE 2020 target (&lt;40% loss in mass activity). We are extending the concept and preparing other L10-MPt/Pt NPs, such as L10-CoPt/Pt NPs, with reduced NP size as a highly efficient ORR catalyst for automotive fuel cell applications.</description><subject>alloy nanoparticles</subject><subject>alloys</subject><subject>ambient temperature</subject><subject>catalysts</subject><subject>catalytic activity</subject><subject>electrochemistry</subject><subject>electrodes</subject><subject>ENERGY PLANNING, POLICY AND ECONOMY</subject><subject>Energy Sciences</subject><subject>fuel cells</subject><subject>iron</subject><subject>L10-FePt</subject><subject>MPt alloy nanoparticle</subject><subject>Oxygen Reduction Reaction</subject><subject>perchloric acid</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc9OGzEQxi1UJNLQGw9g9dTLgv-s195jFSU0UgQV0LPl9Y7B0cabrr0S4dRX4AV4uD5JHZIDt56-Gc1P38zoQ-iCkktKGL1aGxsvZUOZYvUJmlDBSCEoqz6hCSGEFVJV_Ax9jnGd25IpOkFvC8D3yTS-8y8m-T7gZoeXIcGwgWS6zlu8ouTvn9cF_EzYhBZnmZk82kUf8Tw8mWBhAyFhHz6gVxm7MaHfmiF520HErh_w3Dlv_R6-fd49QsB30I72fe0dmEORbRYjdHgGXRfP0akzXYQvR52iX4v5w-xHsbq9Xs6-rwrDuawLJziTLeEKhDRMWtfaBhxThjRCiLIVztoKhHAl4Qyckg5K2XJHueKklSWfoq8H3z4mr6P1CeyT7UMAmzQt91idoW8HaDv0v0eISW98tPlME6Afo2aUVqoSVIn_orSua0Yo4x_QHJ5e9-MQ8qOaEr2PVO8j1cdI-T87D5ZS</recordid><startdate>20180228</startdate><enddate>20180228</enddate><creator>Li, Junrui</creator><creator>Xi, Zheng</creator><creator>Pan, Yung-Tin</creator><creator>Spendelow, Jacob S</creator><creator>Duchesne, Paul N</creator><creator>Su, Dong</creator><creator>Li, Qing</creator><creator>Yu, Chao</creator><creator>Yin, Zhouyang</creator><creator>Shen, Bo</creator><creator>Kim, Yu Seung</creator><creator>Zhang, Peng</creator><creator>Sun, Shouheng</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4051-0430</orcidid><orcidid>https://orcid.org/0000-0001-8011-7134</orcidid><orcidid>https://orcid.org/0000-0002-5446-3890</orcidid><orcidid>https://orcid.org/0000-0003-3953-7772</orcidid><orcidid>https://orcid.org/0000-0003-3603-0175</orcidid><orcidid>https://orcid.org/0000-0002-4386-1199</orcidid><orcidid>https://orcid.org/0000-0003-4807-030X</orcidid><orcidid>https://orcid.org/0000-0002-4028-4250</orcidid><orcidid>https://orcid.org/0000-0002-1921-6683</orcidid><orcidid>https://orcid.org/0000000180117134</orcidid><orcidid>https://orcid.org/0000000240284250</orcidid><orcidid>https://orcid.org/0000000339537772</orcidid><orcidid>https://orcid.org/0000000243861199</orcidid><orcidid>https://orcid.org/000000034807030X</orcidid><orcidid>https://orcid.org/0000000240510430</orcidid><orcidid>https://orcid.org/0000000219216683</orcidid><orcidid>https://orcid.org/0000000336030175</orcidid><orcidid>https://orcid.org/0000000254463890</orcidid><orcidid>https://orcid.org/0000000281117782</orcidid></search><sort><creationdate>20180228</creationdate><title>Fe Stabilization by Intermetallic L10‑FePt and Pt Catalysis Enhancement in L10‑FePt/Pt Nanoparticles for Efficient Oxygen Reduction Reaction in Fuel Cells</title><author>Li, Junrui ; Xi, Zheng ; Pan, Yung-Tin ; Spendelow, Jacob S ; Duchesne, Paul N ; Su, Dong ; Li, Qing ; Yu, Chao ; Yin, Zhouyang ; Shen, Bo ; Kim, Yu Seung ; Zhang, Peng ; Sun, Shouheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3379-f5327d038e57a27cfdcbef28a0b5554d5fcc6e55f4032ef87fe47d3f13830d743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>alloy nanoparticles</topic><topic>alloys</topic><topic>ambient temperature</topic><topic>catalysts</topic><topic>catalytic activity</topic><topic>electrochemistry</topic><topic>electrodes</topic><topic>ENERGY PLANNING, POLICY AND ECONOMY</topic><topic>Energy Sciences</topic><topic>fuel cells</topic><topic>iron</topic><topic>L10-FePt</topic><topic>MPt alloy nanoparticle</topic><topic>Oxygen Reduction Reaction</topic><topic>perchloric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Junrui</creatorcontrib><creatorcontrib>Xi, Zheng</creatorcontrib><creatorcontrib>Pan, Yung-Tin</creatorcontrib><creatorcontrib>Spendelow, Jacob S</creatorcontrib><creatorcontrib>Duchesne, Paul N</creatorcontrib><creatorcontrib>Su, Dong</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Yu, Chao</creatorcontrib><creatorcontrib>Yin, Zhouyang</creatorcontrib><creatorcontrib>Shen, Bo</creatorcontrib><creatorcontrib>Kim, Yu Seung</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Sun, Shouheng</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Junrui</au><au>Xi, Zheng</au><au>Pan, Yung-Tin</au><au>Spendelow, Jacob S</au><au>Duchesne, Paul N</au><au>Su, Dong</au><au>Li, Qing</au><au>Yu, Chao</au><au>Yin, Zhouyang</au><au>Shen, Bo</au><au>Kim, Yu Seung</au><au>Zhang, Peng</au><au>Sun, Shouheng</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fe Stabilization by Intermetallic L10‑FePt and Pt Catalysis Enhancement in L10‑FePt/Pt Nanoparticles for Efficient Oxygen Reduction Reaction in Fuel Cells</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2018-02-28</date><risdate>2018</risdate><volume>140</volume><issue>8</issue><spage>2926</spage><epage>2932</epage><pages>2926-2932</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>We report in this article a detailed study on how to stabilize a first-row transition metal (M) in an intermetallic L10-MPt alloy nanoparticle (NP) structure and how to surround the L10-MPt with an atomic layer of Pt to enhance the electrocatalysis of Pt for oxygen reduction reaction (ORR) in fuel cell operation conditions. Using 8 nm FePt NPs as an example, we demonstrate that Fe can be stabilized more efficiently in a core/shell structured L10-FePt/Pt with a 5 Å Pt shell. The presence of Fe in the alloy core induces the desired compression of the thin Pt shell, especially the two atomic layers of Pt shell, further improving the ORR catalysis. This leads to much enhanced Pt catalysis for ORR in 0.1 M HClO4 solution (at both room temperature and 60 °C) and in the membrane electrode assembly (MEA) at 80 °C. The L10-FePt/Pt catalyst has a mass activity of 0.7 A/mgPt from the half-cell ORR test and shows no obvious mass activity loss after 30 000 potential cycles between 0.6 and 0.95 V at 80 °C in the MEA, meeting the DOE 2020 target (&lt;40% loss in mass activity). We are extending the concept and preparing other L10-MPt/Pt NPs, such as L10-CoPt/Pt NPs, with reduced NP size as a highly efficient ORR catalyst for automotive fuel cell applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/jacs.7b12829</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4051-0430</orcidid><orcidid>https://orcid.org/0000-0001-8011-7134</orcidid><orcidid>https://orcid.org/0000-0002-5446-3890</orcidid><orcidid>https://orcid.org/0000-0003-3953-7772</orcidid><orcidid>https://orcid.org/0000-0003-3603-0175</orcidid><orcidid>https://orcid.org/0000-0002-4386-1199</orcidid><orcidid>https://orcid.org/0000-0003-4807-030X</orcidid><orcidid>https://orcid.org/0000-0002-4028-4250</orcidid><orcidid>https://orcid.org/0000-0002-1921-6683</orcidid><orcidid>https://orcid.org/0000000180117134</orcidid><orcidid>https://orcid.org/0000000240284250</orcidid><orcidid>https://orcid.org/0000000339537772</orcidid><orcidid>https://orcid.org/0000000243861199</orcidid><orcidid>https://orcid.org/000000034807030X</orcidid><orcidid>https://orcid.org/0000000240510430</orcidid><orcidid>https://orcid.org/0000000219216683</orcidid><orcidid>https://orcid.org/0000000336030175</orcidid><orcidid>https://orcid.org/0000000254463890</orcidid><orcidid>https://orcid.org/0000000281117782</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2018-02, Vol.140 (8), p.2926-2932
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_osti_scitechconnect_1438309
source ACS Publications
subjects alloy nanoparticles
alloys
ambient temperature
catalysts
catalytic activity
electrochemistry
electrodes
ENERGY PLANNING, POLICY AND ECONOMY
Energy Sciences
fuel cells
iron
L10-FePt
MPt alloy nanoparticle
Oxygen Reduction Reaction
perchloric acid
title Fe Stabilization by Intermetallic L10‑FePt and Pt Catalysis Enhancement in L10‑FePt/Pt Nanoparticles for Efficient Oxygen Reduction Reaction in Fuel Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fe%20Stabilization%20by%20Intermetallic%20L10%E2%80%91FePt%20and%20Pt%20Catalysis%20Enhancement%20in%20L10%E2%80%91FePt/Pt%20Nanoparticles%20for%20Efficient%20Oxygen%20Reduction%20Reaction%20in%20Fuel%20Cells&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Li,%20Junrui&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2018-02-28&rft.volume=140&rft.issue=8&rft.spage=2926&rft.epage=2932&rft.pages=2926-2932&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.7b12829&rft_dat=%3Cproquest_osti_%3E1999201235%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1999201235&rft_id=info:pmid/&rfr_iscdi=true